首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper proposes a direct Eulerian generalized Riemann problem (GRP) scheme for one-dimensional relativistic hydrodynamics. It is an extension of the Eulerian GRP scheme for compressible non-relativistic hydrodynamics proposed in [M. Ben-Artzi, J.Q. Li, G. Warnecke, A direct Eulerian GRP scheme for compressible fluid flows, J. Comput. Phys. 218 (2006) 19–43]. Two main ingredients, the Riemann invariant and the Rankine–Hugoniot jump condition, are directly used to resolve the local GRP in the Eulerian formulation, and thus the crucial and delicate Lagrangian treatment in the original GRP scheme [3] can be avoided. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed GRP scheme.  相似文献   

2.
3.
We combine Taub's and Ray's variational approaches to relativistic hydrodynamics of perfect fluids into another simple formulation.  相似文献   

4.
5.
In this paper we describe how the equations of relativistic fluid dynamics can be solved numerically using the particle method SPH.  相似文献   

6.
7.
Block-structured meshes provide the ability to concentrate grid points and computational effort in interesting regions of a flow field, without sacrificing the efficiency and low memory requirements of a regular grid. We describe an algorithm for simulating radiation diffusion on such a mesh, coupled to multi-fluid gasdynamics. Conservation laws are enforced by using locally conservative difference schemes along with explicit synchronization operations between different levels of refinement. In unsteady calculations each refinement level is advanced at its own optimal timestep. Particular attention is given to the appropriate coupling between the fluid energy and the radiation field, the behavior of the discretization at sharp interfaces, and the form of synchronization between levels required for energy conservation in the diffusion process. Two- and three-dimensional examples are presented, including parallel calculations performed on an IBM SP-2.  相似文献   

8.
We propose a stable first-order relativistic dissipative hydrodynamic equation in the particle frame (Eckart frame) for the first time. The equation to be proposed was in fact previously derived by the authors and a collaborator from the relativistic Boltzmann equation. We demonstrate that the equilibrium state is stable with respect to the time evolution described by our hydrodynamic equation in the particle frame. Our equation may be a proper starting point for constructing second-order causal relativistic hydrodynamics, to replace Eckart's particle-flow theory.  相似文献   

9.
Simple, self-similar, analytic solutions of 1+3-dimensional relativistic hydrodynamics are presented for cylindrically symmetric fireballs corresponding to central collisions of heavy ions at relativistic bombarding energies.  相似文献   

10.
Simple, self-similar, analytic solutions of 1+1-dimensional relativistic hydrodynamics are presented, generalizing Bjorken's solution to inhomogeneous rapidity distribution.  相似文献   

11.
This paper presents a second-order accurate adaptive generalized Riemann problem (GRP) scheme for one and two dimensional compressible fluid flows. The current scheme consists of two independent parts: Mesh redistribution and PDE evolution. The first part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative interpolation formula is used to calculate the cell-averages and the slopes of conservative variables on the resulting new mesh. The second part is to evolve the compressible fluid flows on a fixed nonuniform mesh with the Eulerian GRP scheme, which is directly extended to two-dimensional arbitrary quadrilateral meshes. Several numerical examples show that the current adaptive GRP scheme does not only improve the resolution as well as accuracy of numerical solutions with a few mesh points, but also reduces possible errors or oscillations effectively.  相似文献   

12.
A new scheme for numerical integration of the 1D2V relativistic Vlasov–Maxwell system is proposed. Assuming that all particles in a cell of the phase space move with the same velocity as that of the particle located at the center of the cell at the beginning of each time step, we successfully integrate the system with no artificial loss of particles. Furthermore, splitting the equations into advection and interaction parts, the method conserves the sum of the kinetic energy of particles and the electromagnetic energy. Three test problems, the gyration of particles, the Weibel instability, and the wakefield acceleration, are solved by using our scheme. We confirm that our scheme can reproduce analytical results of the problems. Though we deal with the 1D2V relativistic Vlasov–Maxwell system, our method can be applied to the 2D3V and 3D3V cases.  相似文献   

13.
Recent and ongoing improvements to hydrodynamic treatments at RHIC are extending the physics reach of hydrodynamics, and improving the phenomenology. Here, the links between technological improvements and the extension of physics are emphasized.  相似文献   

14.
Simple, self-similar, analytic solutions of (1+3)-dimensional relativistic hydrodynamics are presented for ellipsoidally symmetric finite fireballs corresponding to non-central collisions of heavy ions at relativistic bombarding energies. The hydrodynamical solutions are obtained for a new, general family of equations of state with the possibility of describing phase transitions.  相似文献   

15.
16.
The dynamics of a free, special relativistic, adiabatic fluid results from an odd dynamical system in an space-time.  相似文献   

17.
Monte Carlo simulations of joint probability density function (PDF) approaches have been developed in the past largely with Reynolds averaged Navier Stokes (RANS) applications. Current interests are in the extension of PDF approaches to large eddy simulation (LES). As LES resolves accurately the large scales of turbulence in time, the Monte Carlo simulation and the flow field need to be tightly coupled. A tight coupling can be achieved if the consistency between the scalar field solution obtained via finite-volume (FV) methods and that from the stochastic solution of the PDF is ensured. For nonpremixed turbulent flames with two distinct streams, the local reactive mixture is described by the mixture fraction. A Eulerian Monte Carlo method is developed to achieve a second-order accuracy in the instantaneous filtered mixture fraction that is consistent with the corresponding FV. The performances of the proposed scheme are extensively evaluated using a one-dimensional model. Then, the scheme is applied to two cases with LES. The first one is a non-reacting mixing flow of two different fluids. The second case is the Sandia piloted turbulent flame D with a steady state flamelet model. Both results confirm the consistency of the proposed method to the level of filtered mixture fraction.  相似文献   

18.
The half-life of the mirror $\beta$ decay of 31S has been measured at the IGISOL facility at the University of Jyv?skyl?. The value obtained is $T_{1/2}(^{31}S)=(2553.4\pm 1.8)$ ms, in agreement with previous measurements, but with a precision that is better by a factor of ten than the literature value previously adopted. When the new result is combined with the QEC value measured recently at JYFLTRAP, a precision of better than $10^{-3}$ is obtained for the ft value.  相似文献   

19.
20.
We describe a cell-centered Godunov scheme for Lagrangian gas dynamics on general unstructured meshes in arbitrary dimension. The construction of the scheme is based upon the definition of some geometric vectors which are defined on a moving mesh. The finite volume solver is node based and compatible with the mesh displacement. We also discuss boundary conditions. Numerical results on basic 3D tests problems show the efficiency of this approach. We also consider a quasi-incompressible test problem for which our nodal solver gives very good results if compared with other Godunov solvers. We briefly discuss the compatibility with ALE and/or AMR techniques at the end of this work. We detail the coefficients of the isoparametric element in the appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号