首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green-emitting phosphor Na2Ba2Si2O7:Eu2+ has been synthesized by a conventional high-temperature solid-state reaction. The phase structure and luminescence properties are characterized by the X-ray powder diffraction, diffuse reflectance spectra, photoluminescence excitation and emission spectra, temperature-dependent emission spectra, respectively. It can be efficiently excited in the wavelength range of 325–400 nm and consists of a strong broad green band centered at about 501 nm, which is ascribed to 4f66s05d1 → 4f76s25d0 transition of Eu2+. The critical quenching concentration of Eu2+ in the Na2Ba2Si2O7 host is about 0.8 mol % and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, and the activation energy for thermal quenching is calculated as 0.34 eV.  相似文献   

2.
Divalent europium-activated chlorosilicate Ca6Sr4(Si2O7)3Cl2:Eu2+ phosphors were synthesized by a conventional solid-state reaction under reductive atmosphere. These phosphors can be efficiently excited by UV–visible light from 320 to 420 nm, which matches that of a near UV-emitting InGaN chip. Under the 360 nm excitation, Ca6Sr3.97(Si2O7)3Cl2:0.03Eu2+ phosphor shows a strong and broad emission centering at 515 nm, which is attributed to the 5d→4f transition of Eu2+ ion. The mechanism of concentration quenching was determined to be the dipole–dipole interaction and the critical energy-transfer distance of Eu2+ was calculated as 3.31 nm. The CIE chromaticity coordinates of Ca6Sr3.96(Si2O7)3Cl2:0.03Eu2+ phosphor are (0.127, 0.770) according to the emission spectrum. It can be expected that Ca6Sr4(Si2O7)3Cl2:Eu2+ phosphor is a promising candidate as the green component for near-ultraviolet InGaN-based white LED.  相似文献   

3.
4.
《Current Applied Physics》2015,15(3):248-252
Red phosphors Ca9Bi1-x(PO4)7:xEu3+ (x = 0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid-state reaction (SSR) route. The X-ray diffraction patterns, photoluminescence spectra, ultraviolet–visible reflection spectroscopy, decay time and the International Commission on Illumination (CIE) chromaticity coordinates of these compounds were characterized and analyzed. The Eu-doped Ca9Bi(PO4)7 phosphors exhibited strong red luminescence which peaks located at 615 nm due to the 5D07F2 electric dipole transition of Eu3+ ions after excitation at 393 nm. Ultraviolet–visible spectra indicated that the band-gap of Ca9Bi0.30(PO4)7:0.70Eu3+ is larger than that of Ca9Bi(PO4)7. The results indicate that the phosphor Ca9Bi0.30(PO4)7:0.70Eu3+ can be a suitable red-emitting phosphor candidate for LEDs.  相似文献   

5.
Blue phosphor, LiSrPO4:Eu2+, was prepared by solid-state reaction method under a weak reductive atmosphere and investigated by means of photoluminescence, concentration quenching process, and temperature dependence of luminescence. These results show that LiSrPO4:Eu2+ can be efficiently excited by the UV-visible light of 250–440 nm and exhibits bright blue emission. Furthermore, Eu2+-doped LiSrPO4 phosphor shows high thermally stable luminescence comparable to commercial phosphor BaMgAl10O17:Eu2+ (BAM). Two bright blue LEDs were fabricated by incorporating an InGaN-based near-UV chip with the obtained phosphor LiSrPO4:Eu2+ and BAM, respectively. Their luminescence properties were compared based on different forward-bias currents. All the characteristics suggest that LiSrPO4:Eu2+ is a good blue phosphor candidate for creating white light in phosphor-conversion white LEDs.  相似文献   

6.
Orange-emitting Sr3Al2O5Cl2:Eu2+ phosphors were synthesized by a high-temperature solid-state reaction. The excitation spectrum shows a broad band from the UV region to the blue region. The emission spectrum shows strong orange emission peaking at 610 nm, attributed to the d–f transition of the Eu2+ ion. By combining the Sr3Al2O5Cl2:Eu2+ phosphor with 420 nm and 460 nm chips, three white light-emitting diodes (LEDs) were fabricated. The warm-white LEDs show color rendering indexes of 76, 66 and 90 with color temperatures of 2447, 3546 and 4300 K, respectively. This new phosphor exhibits the potential to act as a single host doped with Eu2+ phosphor for UV or blue chip excited white LEDs.  相似文献   

7.
In the present work, red-emitting Ca2V2O7:xEu3+ (x = 0.5–6.0 mol%) nanophosphors, in the form of powders, were synthesized by the citrate-gel combustion method using metal nitrates as precursors and citric acid as fuel. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy were used to study the structure, morphology and spectral properties of the samples. The chemical compositions and electronic states of the powders were analyzed with X-ray photoelectron spectroscopy. The average crystallite sizes estimated using the XRD data were found to be in the range of 30–45 nm, and were cross verified by TEM. The lattice parameters determined by the POWD program were approximated as a = 7.242 Å, b = 6.674 Å, c = 6.932 Å and V = 291.24 Å3, respectively. Under UV (395 nm) (PL) and electron (CL) excitation, the nanophosphors show characteristic emission from the Eu3+ ion (5D0 → 7Fj, j = 1–5) with the main peaks at 612 and 616 nm. The maximum emission intensity was recorded from the sample with an Eu3+ concentration of 4 mol% and a critical energy distance of 19.084 Å between the donor and the acceptor. Above this concentration, there was a reduction in the intensity due to dipole–dipole induced concentration quenching effects. The potential applications of this phosphor as a high color-purity phosphor in light-emitting diodes are evaluated.  相似文献   

8.
Europium (III) ions doped red phosphors K4Ca(PO4)2 were prepared first time by high temperature solid state reaction method. The prepared phosphors structure was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses. The thermal properties of the synthesized phosphor were investigated by differential scanning calorimetry (DSC) analysis. Photoluminescence (PL) spectra of K4Ca(PO4)2:Eu3+ phosphors have shown strong red emission at 618 nm (5D07F2) with near UV an excitation wavelength of λexc=394 nm (7F05L6). In addition, the decay curves and CIE color coordinate measurements are also carried out. Hence, emission and excitation characterization of synthesized phosphors shows that the phosphors may be a promising red component for the application in the white light emitting diodes (WLEDs).  相似文献   

9.
A blue-emitting phosphor, Eu2+-activated Mg3Ca3(PO4)4 phosphor was synthesized by conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation. Photoluminescence (PL) results showed that Mg3Ca3(PO4)4: Eu2+ could be efficiently excited by UV–visible light from 250 to 430 nm, which matched well with the emission wavelengths of near-UV and UV LED chips. The effects of the doped-Eu2+ concentration in Mg3Ca3(PO4)4: Eu2+ on the PL were also investigated. The result reveals that Mg3Ca3(PO4)4: Eu2+ is a potential blue-emitting phosphor for white LEDs.  相似文献   

10.
Eu2+的掺杂浓度对BaAl2Si2O8:Eu2+荧光粉发光特性的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
采用化学共沉淀法一次煅烧工艺合成了BaAl2Si2O8:Eu2+蓝色荧光粉.用X射线衍射仪和荧光分光光度计等对BaAl2Si2O8:Eu2+蓝色荧光粉的相结构、发光性能进行了测试.结果表明:化学共沉淀法一次煅烧工艺合成的BaAl2Si2O8:Eu2+蓝色荧光粉为单相;其激发光谱分布在240-410 nm的波长范围,峰值位于320 nm处,可以被InGaN管芯产生的350-410 nm辐射有效激发;在365 nm近紫外光的激发下,测得其发射光谱是位于465 nm附近的宽带峰.BaAl2Si2O8:Eu2+蓝色荧光粉的发光强度随Eu2+浓度的增大逐渐加强,当Eu2+掺杂的摩尔分数为3.5%时,发光强度达到最大值,而后随掺杂浓度的增加而减小,发生浓度猝灭;根据Dexter能量共振理论,该浓度猝灭是由于Eu2+的离子间交换相互作用引起的.  相似文献   

11.
马明星  朱达川  涂铭旌 《物理学报》2009,58(9):6512-6517
采用化学共沉淀法一次煅烧工艺合成了BaAl2Si2O8:Eu2+蓝色荧光粉.用X射线衍射仪、荧光分光光度计和扫描电镜测试了助熔剂H3BO3对BaAl2Si2O8:Eu2+蓝色荧光粉物相结构、发光性能、形貌等的影响.研究表明:化学共沉淀法一次煅烧工艺合成的BaAl2Si2O8:Eu2+蓝色荧光粉为单相,H3BO3的加入使基质结构由六方相转变成单斜相,并引起发射主峰位置和发射强度的变化;BaAl2Si2O8:Eu2+蓝色荧光粉的发光强度随着H3BO3加入量的增加先增强,后减弱,当加入H3BO3的质量分数为1.5%时,发光强度最大;H3BO3的加入使合成BaAl2Si2O8:Eu2+蓝色荧光粉的颗粒呈类球形,分布更加均匀,粒度更小. 关键词: 3BO3')" href="#">H3BO3 2Si2O8:Eu2+')" href="#">BaAl2Si2O8:Eu2+ 发光特性 化学共沉淀法  相似文献   

12.
采用高温固相法成功合成了单一相的Eu3+,Bi3+共掺的Mg5SnB2O10红色荧光粉,并通过X射线衍射、漫反射光谱、光致发光光谱等手段对该体系的结构及其发光特性进行了测试和研究.激发光谱表明,该荧光粉在393 nm呈现Eu3+7Fo—5L6特征激发,可以与用于发光二极管的近紫外芯片很好地匹配.在393 nm激发下,其发射光谱在591,612,701 nm处呈现Eu3+5Do—7F1,5Do—7F2,5D07F4的特征发射.并且当固定Eu3+的浓度时,随着Bi3+含量的增加,发现Bi3+,Eu3+在这一体系中存在能量传递现象,系列样品发光强度大幅度提高.通过研究系列样品在不同Bi3+,Eu3+掺杂浓度下的发光性能,得出最佳样品为Mg4.89Eu0.1Bi0.01SnB2O10,其积分强度达到了商用Y2O2S:Eu3+的1.1倍.  相似文献   

13.
A series of blue-emitting Ca2 ? xEuxPO4Cl phosphors were synthesized by a solid state method in a reducing atmosphere. The factors those affect the structure and the photoluminescence (PL) intensities of phosphors, including the dosage of chlorine source CaCl2, reaction time and annealing temperature, have been investigated in detail. X-ray diffraction (XRD) and photoluminescence measurements were performed to testify the crystal structure and luminescent properties. The optimal Eu2+ concentration was determined, and the mechanism of the concentration quenching was predominated by dipole–dipole interaction. The present phosphor exhibits a strong absorption in the near-UV region, emits an intense blue emission centered at 451 nm and presents excellent thermal stability, suggesting that the phosphor is competitive as a promising blue-emitting phosphor for near ultraviolet (n-UV) light-emitting diodes (LEDs).  相似文献   

14.
Rare-earth ions coactivated red phosphors Gd0.2RE1.8(WO4)3 (RE=Eu3+ and Sm3+) were synthesized by conventional solid-state reaction using boric acid as a flux agent. The samples were characterized by X-ray diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS) and luminescence spectrometer (LS). The results showed that the Eu–Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under ultraviolet (UV) radiation. Samarium(III) ions are effective in broadening and strengthened absorptions around 400 nm. Furthermore, it exhibits enhanced luminescence emission. when the mole ratio of boric acid is about 0.16, the luminescence capability is optimum. Two strongest lines at ultraviolet (394 nm) and blue (465 nm) in excitation spectra of these phosphors match well with the output wavelengths of UV and blue GaN-based light-emitting diodes (LEDs) chips.  相似文献   

15.
Red long-lasting phosphor Y2O2S:Eu3+, Zn2+, Ti4+ nanotubes were prepared by hydrothermal method. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence and thermoluminescence spectra (TL) were used to characterize the long-lasting phosphor. XRD investigation revealed that the product synthesised under 750 °C for 6 h was a pure phase of Y2O2S. SEM observation showed that the sulfuretted phosphor inherited the tube-like shape from the precursor. Under 325 nm UV excitation, the result indicated the strongest red-emission lines at 627 nm, corresponded to the transition from 5D0 to 7F2 level of Eu3+ ion. Both the afterglow decay curves and TL curves revealed that the phosphor had efficient luminescent and excellent long-lasting properties.  相似文献   

16.
A series of Eu3+ activated K3Y1?xEux(PO4)2 phosphors were synthesized by the solid-state reaction method. The structures and photoluminescent properties of these phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the monoclinic K3Y(PO4)2 or K3Eu(PO4)2. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370–410 nm) light. The orange emission from transition 5D07F1 is dominant, and the peak value ratio of 5D07F1/5D07F2 is 1.44. The emission spectra exhibit strong reddish orange performance (CIE chromaticity coordinates: x=0.63, y=0.36), which is due to the 5D07FJ transitions of Eu3+ ions. The relationship between the structure and the photoluminescent properties of the phosphors was studied. The absence of concentration quenching of Eu3+ was observed in K3Y1?xEux(PO4)2. K3Eu(PO4)2 has potential application as a phosphor for white light-emitting diodes.  相似文献   

17.
Eu3+激活的La2Mo2O9红色荧光粉的制备与性能   总被引:1,自引:1,他引:1       下载免费PDF全文
李旭  杨勇  杨志平  关丽  刘冲 《发光学报》2008,29(1):93-96
利用高温固相法制备了Eu3+掺杂的La2Mo2O9红色荧光粉,并对这种荧光粉的结构及发光性质进行了研究。XRD结果表明,实验合成了单一立方相的La2Mo2O9荧光粉体。该荧光粉的激发光谱由一宽带和一系列的锐峰组成;发射光谱由一系列锐峰组成,这些都与Eu3+的特征跃迁5DJ(J=0,1)和7FJ(J=1~4)相对应。结果表明该荧光粉可被395nm的紫外光和470nm的可见光有效激发,并发出峰值位于620nm左右的红光,亮度可达到传统红色荧光粉Y2O2S:Eu3+的1.5倍以上,这表明它可以作为蓝+黄模式白光LED的红色补光粉,也可以作为UV-LED激发三基色荧光粉体系中的红色荧光粉。研究了Eu3+的掺杂浓度以及不同助熔剂对样品发光性质的影响。Eu3+的摩尔分数为0.3时,发光强度达到最强。质量分数为3%的NH4Cl作为助熔剂时效果最好。  相似文献   

18.
A thiogallate chalcogenide phosphor CaLaGa3S7:Eu2+ was synthesized by a solid-state reaction at 950 °C in a H2S atmosphere. The photoluminescence excitation,emission spectra, concentration quenching, fluorescence lifetime, and thermal quenching process of the phosphor were investigated in detail. It was found that the synthesized phosphor emitted intense and broadband yellowish-green light with a peak at 554 nm. Thus, the proposed phosphor is suitable for the development of blue or near UV LED. The critical dopant concentration of Eu2+ (Rc=15 Å) per unit formula was found to be 0.15 mol. At room temperature, the fluorescence lifetime of Eu2+ in CaLaGa3S7 was found to be 0.216 μs. The activation energy for thermal quenching was 0.29 eV. The chromaticity coordinates of our phosphor is very close in color to Y3Al5O12:Ce3+. Therefore, CaLaGa3S7:Eu2+ can be a good alternative as a yellowish-green phosphor and can be used for white light generation in phosphor-converted LEDs.  相似文献   

19.
Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究   总被引:9,自引:0,他引:9       下载免费PDF全文
研究了Eu2+激活的绿色发光材料Ca3SiO5的制备条件和发光性质. Eu2+中心形成主峰值为501 nm和次峰值为570 nm的特征宽带,两峰值叠加形成发射峰值为502 nm的绿色发射光谱带. 利用这些光谱结果和Van Uitert 经验公式,确认Ca3SiO5:Eu2+中存在两种性质有差异的Eu2+发光中心,它们分别占据基质中八配位的Ca2+(Ⅰ)格位和四配位的Ca2+(Ⅱ)格位. 其激发光谱分布在250-450 nm的波长范围,峰值位于375 nm处,可以被InGaN管芯产生的350-410 nm辐射有效激发.  相似文献   

20.
In our study, the 1% mol Eu2+ doped Li2CaSiO4: B3+ phosphors were prepared by the combustion method as fluorescent material for ultraviolet, light-emitting diodes (UV-LEDs) used as a light source. The properties of Li2 (Ca0.99, Eu0.01) SiO4: B3+ phosphors with urea concentration, doping boric acid and a series of initiating combustion temperature were investigated. The crystallization and particle sizes of Li2 (Ca0.99, Eu0.01) SiO4: B3+ has been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by UV to the visible region, and exhibited bluish green light with a peak of 480 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2 (Ca0.99, Eu0.01) SiO4: B3+ and the optimum molar ratio of boric acid to calcium nitrate was about 0.06. The optimized phosphors Li2 (Ca0.99, Eu0.01) SiO4: B 0.06 3+ showed 180% improved emission intensity compared with that of the Li2 (Ca0.99, Eu0.01) SiO4 phosphors under ultraviolet (λex =287 nm) excitation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号