首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二维平板通道中流动与传热的格子-Boltzmann模拟   总被引:3,自引:0,他引:3  
格子-Boltzmann数值模拟方法(LBM),在最近十几年来得到迅速发展。本文发展了LBM的流动与传热模型,并对二维平板通道中的流动与传热进行了模拟,采用密度分布函数得到速度场,用单独的内能分布函数得到温度场,并与传统FVM方法所得到的多个特征量结果进行了比较,模拟结果与FVM解均吻合很好。鉴于LBM边界条件处理简单和易于实施等特点,该方法可望成为求解流动与传热的一种有效数值模拟手段。  相似文献   

2.
In this paper, we propose a new approach to implementing boundary conditions in the lattice Boltzmann method (LBM). The basic idea is to decompose the distribution function at the boundary node into its equilibrium and non-equilibrium parts, and then to approximate the non-equilibrium part with a first-order extrapolation of the non-equilibrium part of the distribution at the neighbouring fluid node. Schemes for velocity and pressure boundary conditions are constructed based on this method. The resulting schemes are of second-order accuracy. Numerical tests show that the numerical solutions of the LBM together with the present boundary schemes are in excellent agreement with the analytical solutions. Second-order convergence is also verified from the results. It is also found that the numerical stability of the present schemes is much better than that of the original extrapolation schemes proposed by Chen et al. (1996 Phys. Fluids 8 2527).  相似文献   

3.
马致遥  单锋  章东 《声学学报》2018,43(2):217-223
高强度聚焦超声(HIFU)是一种新型的无创治疗肿瘤新技术,其中换能器声场数值计算能够为HIFU治疗提供重要的依据。传统非线性KZK和SBE模型广泛应用于换能器声场数值计算,但依然存在某些不足。我们采用一种介观尺度的新型流体力学方法,即格子Boltzmann方法(LBM),基于2维9离散速度(D2Q9)格子构建了轴对称多弛豫参数LBM模型,并通过调节弛豫参数分析其对模型的影响;利用该模型对两个具有不同张角的球面聚焦换能器的声场进行数值模拟,并与KZK和SBE模型的计算结果进行比较。结果表明LBM模型能够很好地描述超声波的激发和传播机制,从流体力学的角度描述聚焦声场的分布,具有清晰的物理意义,且计算过程不受换能器张角的限制,在换能器声场的理论分析和模拟计算及其在HIFU治疗中的应用有着积极的意义。   相似文献   

4.
本文采用格子Boltzmann方法(LBM)对微尺度Couette流的流动及传热进行了模拟.为了获得壁面边界的速度滑移和温度阶跃,在含有粘性热耗散的热格子模型的基础上,提出了一种新的直接基于宏观量的边界处理格式.模拟得到的速度场和温度分布与解析解吻合得相当好,充分说明了本文采用的模型和边界处理的合理性同时在模拟中还发现:对于不同的Kn数,均存在使得其上壁面的温度阶跃为零的临界Ec数,并且其临界值均在3.0附近.  相似文献   

5.
The lattice Boltzmann method (LBM) for two-phase flow simulation is often hindered by insufficient resolution at the interface. As a result, the LBM simulation of bubbles in bubbling flows is commonly limited to spherical or slightly deformed bubble shapes. In this study, the adaptive mesh refinement method for the LBM is developed to overcome such a problem. The approach for this new method is based on the improved interaction potential model, which is able to maintain grid-independent fluid properties in the two-fluid phases and at the interface. The LBM–AMR algorithm is described, especially concerning the LBM operation on a non-uniform mesh and the improved interaction potential model. Numerical simulations have been performed to validate the method in both single phase and multiphase flows. The 2D and 3D simulations of the buoyant rise of bubbles are conducted under various conditions. The agreement between the simulated bubble shape and velocity with experiments illustrates the capability of the LBM–AMR approach in predicting bubble dynamics even under the large bubble deformation conditions. Further, the LBM–AMR technique is capable of simulating a complex topology change of the interface. Integration of LBM with AMR can significantly improve the accuracy and reduce computation cost. The method developed in this study may appreciably enhance the capability of LBM in the simulation of complex multiphase flows under realistic conditions.  相似文献   

6.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

7.
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young–Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.  相似文献   

8.
This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.  相似文献   

9.
We integrate the lattice Boltzmann method (LBM) and immersed boundary method (IBM) to capture the coupling between a rigid boundary surface and the hydrodynamic response of an enclosed particle laden fluid. We focus on a rigid box filled with a Newtonian fluid where the drag force based on the slip velocity at the wall and settling particles induces the interaction. We impose an external harmonic oscillation on the system boundary and found interesting results in the sedimentation behavior. Our results reveal that the sedimentation and particle locations are sensitive to the boundary walls oscillation amplitude and the subsequent changes on the enclosed flow field. Two different particle distribution analyses were performed and showed the presence of an agglomerate structure of particles. Despite the increase in the amplitude of wall motion, the turbulence level of the flow field and distribution of particles are found to be less in quantity compared to the stationary walls. The integrated LBM-IBM methodology promised the prospect of an efficient and accurate dynamic coupling between a non-compliant bounding surface and flow field in a wide-range of systems. Understanding the dynamics of the fluid-filled box can be particularly important in a simulation of particle deposition within biological systems and other engineering applications.  相似文献   

10.
Gaseous flow and heat transfer in micro-channels are simulated by the lattice Boltzmann method (LBM). Thermal LB model with viscous heat dissipation has been adopted in the simulation. A new boundary treatment is proposed based on macro variables in order to capture the velocity slip and temperature jump. The numerical results show the velocity and temperature profiles are in agreement with the analytic results in different cases, which exhibits the availability of this model and boundary treatment in describing thermal micro-flow with viscous heat effect. The variation rules of temperature jump with different parameters are also discussed in this study.  相似文献   

11.
Lattice Boltzmann methods (LBMs) are very efficient for computational fluid dynamics, and for capturing the dynamics of weak acoustic fluctuations. It is known that multi-relaxation-time lattice Boltzmann method (MRT–LBM) appears as a very robust scheme with high precision. There exist several free relaxation parameters in the MRT–LBM. Although these parameters have been tuned via linear analysis, the sensitivity analysis of these parameters and other related parameters is still not sufficient for describing the behavior of the dispersion and dissipation relations of the MRT–LBM. Previous researches have shown that the bulk dissipation in the MRT–LBM induces a significant over-damping of acoustic disturbances. This indicates that the classical MRT–LBM is not best suited to recover the correct behavior of pressure fluctuations. In wave-number space, the first/second-order sensitivity analyses of matrix eigenvalues are used to address the sensitivity of the wavenumber magnitudes to the dispersion-dissipation relations. By the first-order sensitivity analysis, the numerical behaviors of the group velocity of the MRT–LBM are first obtained. Afterwards, the distribution sensitivities of the matrix eigenvalues corresponding to the linearized form of the MRT–LBM are investigated in the complex plane. Based on the sensitivity analysis and an effective algorithm of recovering linearized Navier–Stokes equations (L-NSEs) from linearized MRT–LBM (L-MRT–LBM), we propose some simplified optimization strategies to determine the free relaxation parameters of the MRT–LBM. Meanwhile, the dispersion and dissipation relations of the optimal MRT–LBM are quantitatively compared with the exact dispersion and dissipation relations. At last, some numerical validations on classical acoustic benchmark problems are shown to assess the new optimal MRT–LBM.  相似文献   

12.
The lattice Boltzmann method has recently gained popularity as a tool for simulating complex fluid flows. It uses discrete sets of velocity vectors, or lattices, to create a reduced model of the molecular dynamics of a continuum fluid. While several lattices are believed to behave isotropically, there are reports of qualitatively incorrect results. However, thus far, the reason as to why a lack of isotropy occurs is not known. Based on the hypothesis that lower order lattices may not display rotational invariance, this study tests the isotropy of the D3Q15, D3Q19 and D3Q27 lattices by performing simulations at intermediate Reynolds numbers (50–500) and low Knudsen number (<0.0005) in an axisymmetrical geometry with a nozzle leading to a throat followed by a sudden expansion. The symmetry properties of the results were examined. It was found that at Re ? 250 the D3Q15 and D3Q19 lattices produced different results depending on the plane of the lattice with which the flow was aligned. Lattice planes with fewer than six velocity vectors consistently produced results which were qualitatively different from the planes with six or more velocity vectors. These errors were not observed at Re = 50 or when a D3Q27 lattice was used. They appeared to be independent of grid density, collision operator and Ma. This suggests that the lattices which contain these planes are not fully isotropic and therefore do not properly replicate the behavior of a real fluid in this particular situation, notably downstream from the expansion. Predictions made using these models in more complex geometries may therefore be affected by the orientation of the lattice. When using LBM in CFD simulation (including validation) this study highlights the need for caution to ensure that the solution obtained is independent of the lattice orientation throughout the domain.  相似文献   

13.
贺宏  李会雄  冯永昌 《计算物理》2012,29(2):234-238
采用耦合的双分布函数格子Boltzmann方法模拟超燃冲压发动机中隔离段的流动.计算结果反映了隔离段内流场的基本结构,表明LBM在隔离段的模拟中是-种具有潜力的数值计算方法.  相似文献   

14.
孙东科  项楠  陈科  倪中华 《物理学报》2013,62(2):24703-024703
本文发展了一个能够模拟微流场环境下粒子惯性迁移行为的三维耦合模型.该模型采用基于动理论的格子玻尔兹曼方法(LBM)描述流体流动,采用牛顿动力学模型描述粒子的平动和转动,采用基于LBM反弹格式的运动边界法实现流体与粒子模型的耦合.模拟了重力作用下粒子的沉降过程和Couette流条件下粒子的转动过程,通过将模拟结果与文献中的基准解进行对比定量验证了模型的可靠性.模拟了不同大小的球形粒子在环形流道中的迁移,成功复现了经典的流道截面二次流形成过程,分析了粒径大小对粒子在流道中平衡位置的影响机理.结果表明,粒子在弯流道中的平衡位置与粒径大小密切相关,小半径粒子的平衡位置靠近流道外侧而大半径粒子则靠近流道内侧.通过实验对模拟结果进行了定性验证.本模型为深入研究微流场环境下粒子的运动特性以及开发微流控粒子分选器件提供了参考依据.  相似文献   

15.
A version of immersed boundary-lattice Boltzmann method (IB-LBM) is proposed in this work. It is based on the lattice Boltzmann equation with external forcing term proposed by Guo et al. [Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308], which can well consider the effect of external force to the momentum and momentum flux as well as the discrete lattice effect. In this model, the velocity is contributed by two parts. One is from the density distribution function and can be termed as intermediate velocity, and the other is from the external force and can be considered as velocity correction. In the conventional IB-LBM, the force density (external force) is explicitly computed in advance. As a result, we cannot manipulate the velocity correction to enforce the non-slip boundary condition at the boundary point. In the present work, the velocity corrections (force density) at all boundary points are considered as unknowns which are computed in such a way that the non-slip boundary condition at the boundary points is enforced. The solution procedure of present IB-LBM is exactly the same as the conventional IB-LBM except that the non-slip boundary condition can be satisfied in the present model while it is only approximately satisfied in the conventional model. Numerical experiments for the flows around a circular cylinder and an airfoil show that there is no any penetration of streamlines to the solid body in the present results. This is not the case for the results obtained by the conventional IB-LBM. Another advantage of the present method is its simple calculation of force on the boundary. The force can be directly calculated from the relationship between the velocity correction and the force density.  相似文献   

16.
十三点格子Boltzmann模型仿真   总被引:2,自引:1,他引:1  
格子气和格子Boltzmann方法的迅速发展提供了一类求解流体力学问题的新方法。格子Boltzmann方法在保留了格子气模型优点的同时,克服了它的不足之处。本文讨论了一种三迭加HPP十三点模型,通过选择适当的平衡分布及参数,并用Chapman-Enskog展开和多尺度技术导出了Navier-Stokes方程。在微机上模拟了空腔流的流动问题,并与传统方法的计算结果进行了比较,结果表明该模型能较好的模拟复杂流动现象,并具有较好的工程应用背景。  相似文献   

17.
The lattice Boltzmann method (LBM) can gain a great amount of performance benefit by taking advantage of graphics processing unit (GPU) computing, and thus, the GPU, or multi-GPU based LBM can be considered as a promising and competent candidate in the study of large-scale fluid flows. However, the multi-GPU based lattice Boltzmann algorithm has not been studied extensively, especially for simulations of flow in complex geometries. In this paper, through coupling with the message passing interface (MPI) technique, we present an implementation of multi-GPU based LBM for fluid flow through porous media as well as some optimization strategies based on the data structure and layout, which can apparently reduce memory access and completely hide the communication time consumption. Then the performance of the algorithm is tested on a one-node cluster equipped with four Tesla C1060 GPU cards where up to 1732 MFLUPS is achieved for the Poiseuille flow and a nearly linear speedup with the number of GPUs is also observed.  相似文献   

18.
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.  相似文献   

19.
格子Boltzmann亚格子模型的研究   总被引:2,自引:1,他引:1  
为了将格子Boltzmann法应用于大雷诺数流动的模拟,本文将Smagorinsky亚格子模型和LBGK模型相结合,并对该亚格子LBM模型进行了研究。利用该亚格子LBM模型,对二维顶盖驱动流进行了模拟,得到了若干大雷诺数下流线图和方腔中心线上无量纲速度分布。计算结果与基准解进行比较,两者相互吻合。  相似文献   

20.
A new immersed boundary method based on vorticity–velocity formulations for the simulation of 2D incompressible viscous flow is proposed in present paper. The velocity and vorticity are respectively divided into two parts: one is the velocity and vorticity without the influence of the immersed boundary, and the other is the corrected velocity and the corrected vorticity derived from the influence of the immersed boundary. The corrected velocity is obtained from the multi-direct forcing to ensure the well satisfaction of the no-slip boundary condition at the immersed boundary. The corrected vorticity is derived from the vorticity transport equation. The third-order Runge–Kutta for time stepping, the fourth-order finite difference scheme for spatial derivatives and the fourth-order discretized Poisson for solving velocity are applied in present flow solver. Three cases including decaying vortices, flow past a stationary circular cylinder and an in-line oscillating cylinder in a fluid at rest are conducted to validate the method proposed in this paper. And the results of the simulations show good agreements with previous numerical and experimental results. This indicates the validity and the accuracy of present immersed boundary method based on vorticity–velocity formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号