首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In cable-stayed structures cables are subjected to potential damage, mainly due to fatigue and galvanic corrosion. The paper presents an analysis of damage effects on the statics and dynamics of suspended cables. An elastic continuous monodimensional model for damaged cables, including geometric nonlinearities, is formulated for the purpose. The damage is described as a diffused reduction of the cable axial stiffness, and defined through its intensity, extent and position. Exact solutions of the equations governing the cable static equilibrium under self-weight are achieved, and the significance of the tension loss and sag augmentation resulting from damage are investigated under variation of practically significant parameters. The system spectral properties characterizing the free undamped dynamics are obtained in a closed-form fashion for shallow cables within the low frequency range. The sensitivity of the frequencies to the intensity and extent of damage is discussed, outlining two damage effects, which alternatively stiffen or soften the cable modes, whose respective static and geometric origin is recognized. Finally, the symmetry-breaking induced by damage on the static profile is verified to destroy the crossing phenomenon (crossover) characterizing the frequency loci of undamaged cables, which degenerates into a narrow frequency veering phenomenon.  相似文献   

2.
Archive of Applied Mechanics - A mathematical model is proposed to investigate the behavior of a suspended arch bridge, subjected to sudden failure of cables. The main aim of this study is to...  相似文献   

3.
悬索在其施工、运营和维护阶段会不可避免地遭受损伤,导致振动特性发生改变。本文基于哈密顿变分原理,引入与损伤程度、范围和位置相关的三个无量纲参数,建立损伤效应影响下悬索面内动力学模型,并推导其无穷维的非线性动力学微分方程。利用高阶多尺度法得到系统发生主共振响应时的幅频响应方程及稳态解。数值算例表明,悬索线性和非线性共振响应特性与损伤效应密切相关。悬索一旦发生损伤,其张力减小,垂跨比增加,将形成新的静力构形。受损悬索的固有频率将下降,且随着损伤程度增加而进一步减小。损伤会导致悬索正/反对称模态频率的交点发生偏移,影响系统内共振响应特性;损伤会引发系统振动特性发生明显定量和定性改变,但是垂跨比不同,其共振响应特性受损伤影响会有明显区别;损伤甚至会直接改变系统稳态响应幅值以及稳定解的数量,导致系统产生明显大幅振动,影响结构安全。  相似文献   

4.
Zheng  Panpan  Zhao  Yaobing  Wu  Xianqiang  Chen  Lincong 《Meccanica》2022,57(8):1831-1851
Meccanica - This paper revisits the mathematical modeling of suspended cables with multi-segment damaged and thermal effects simultaneously. Damage effects are more complex than the thermal ones,...  相似文献   

5.
基于Lagrange原理,建立了一套新的悬索大挠度动力特性和动力响应分析的有限体积法列式,推导了结点力向量、质量矩阵和单元刚度矩阵的显式表达式。该列式的一个显著特点是直接利用工程应变定义结构变形,其物理意义明确,列式简单,适用于各种垂度和荷载情况的悬索大挠度动力分析。实例动力特性和随机风振响应分析表明,该有限体积列式不仅计算效率高,而且具有良好的计算精度。  相似文献   

6.
In this study, two analytical methods are applied to study the primary resonances response of suspended cables subjected to external excitation. We choose four different sag-to-span ratios and the first two modes to investigate the differences in nonlinear responses obtained with analytical methods. First, we summarize the equations of motion by applying the Hamilton’s principle and quasi-static assumption, and then these equations are discretized by the Galerkin procedure. Second, the multiple-scale method and homotopy analysis method are adopted to obtain the approximate solutions. Moreover, numerical integrations are introduced in order to verify the obtained approximate results. The numerical results show that frequency response curves obtained by different analytical methods show different quantitative predictions in some cases of motion, modes, and particular sag-to-span ratios. Finally, the differences in displacement fields and axial tension forces are compared and analyzed.  相似文献   

7.
The deformation and snap-through behaviour of athin-walled elastic spherical shell statically compressed on aflat surface or impacted against a flat surface are studied theoretically and numerically in order to estimate the influenceof the dynamic effects on the response.A table tennis ballis considered as an example of a thin-walled elastic shell.Itis shown that the increase of the impact velocity leads to avariation of the deformed shape thus resulting in larger deformation energy.The increase of the contact force is causedby both the increased contribution of the inertia forces andcontribution of the increased deformation energy.The contact force resulted from deformation/inertia ofthe ball and the shape of the deformed region are calculated by the proposed theoretical models and compared withthe results from both the finite element analysis and somepreviously obtained experimental data.Good agreement isdemonstrated.  相似文献   

8.
This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.  相似文献   

9.
In this study, the 3D nonlinear equations of motion of the suspended cable with moving mass are obtained via the Hamilton principle, and its transient linear planar dynamics is investigated. Considering the quasi-static assumption, the condensed planar model accounting for the effect of the moving mass is derived, and it is then discretized by choosing the static deflection and sine series as shape functions. It is shown that this expansion shows good convergence features. The Newmark method is used to investigate the transient response. The effects of the inertia force, mass, sag and velocity of the moving mass on the transient dynamics of the suspended cable are systematically investigated. Finally, the horizontal tension of the suspended cable and the case of sequentially moving masses are examined.  相似文献   

10.
A general dynamical theory of magnetizable, electrically and thermally conducting media is developed for soft ferromagnetic or paramagnetic materials in external electromagnetic fields. The general equations are linearized by assuming infinitesimal strains, linear constitutive equations and that all field variables may be divided into two parts: a "rigid body state" and a "perturbation state". The former is the same as the one in rigid body electrodynamics, and the latter which accounts for electromagnetic interaction with the deformable continuum is coupled with stress and strain through linearized field equations. The theory is developed for general anisotropy but specialized for materials with uniaxial, or higher, symmetry.  相似文献   

11.
The governing equation of motion of gradient elastic flexural Kirchhoff plates, including the effect of in-plane constant forces on bending, is explicitly derived. This is accomplished by appropriately combining the equations of flexural motion in terms of moments, shear and in-plane forces, the moment–stress relations and the stress–strain equations of a simple strain gradient elastic theory with just one constant (the internal length squared), in addition to the two classical elastic moduli. The resulting partial differential equation in terms of the lateral deflection of the plate is of the sixth order instead of the fourth, which is the case for the classical elastic case. Three boundary value problems dealing with static, stability and dynamic analysis of a rectangular simply supported all-around gradient elastic flexural plate are solved analytically. Non-classical boundary conditions, in additional to the classical ones, have to be utilized. An assessment of the effect of the gradient coefficient on the static or dynamic response of the plate, its buckling load and natural frequencies is also made by comparing the gradient type of solutions against the classical ones.  相似文献   

12.
Nonlinear planar oscillations of suspended cables subjected to external excitations with three-to-one internal resonances are investigated. At first, the Galerkin method is used to discretize the governing nonlinear integral–partial-differential equation. Then, the method of multiple scales is applied to obtain the modulation equations in the case of primary resonance. The equilibrium solutions, the periodic solutions and chaotic solutions of the modulation equations are also investigated. The Newton–Raphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency/force–response curves. The supercritical Hopf bifurcations are found in these curves. Choosing these bifurcations as the initial points and applying the shooting method and the pseudo-arclength path-following algorithm, the periodic solution branches are obtained. At the same time, the Floquet theory is used to determine the stability of the periodic solutions. Numerical simulations are used to illustrate the cascades of period-doubling bifurcations leading to chaos. At last, the nonlinear responses of the two-degree-of-freedom model are investigated.  相似文献   

13.
An efficient procedure for analyzing in-plane vibrations of flat-sag suspended cables carrying an array of moving oscillators with arbitrarily varying velocities is presented. The cable is modelled as a mono-dimensional elastic continuum, fully accounting for geometrical nonlinearities. By eliminating the horizontal displacement component through a standard condensation procedure, the nonlinear integro-differential equation governing vertical cable vibrations is derived. Due to the dynamic interaction at the contact points with the moving oscillators, such equation is coupled to the set of ordinary differential equations ruling the response of the travelling sub-systems. An improved series representation of vertical cable displacement is proposed, which allows to overcome the inability of the traditional Galerkin method to reproduce the kinks and abrupt changes of cable configuration at the interface with the moving sub-systems. Following the philosophy of the well-known “mode-acceleration” method, the convergence of the series expansion of cable response in terms of appropriate basis functions is improved through the introduction of the so-called “quasi-static” solution. Numerical results demonstrate that, despite the basis functions are continuous, the improved series enables to capture with very few terms the abrupt changes of cable profile at the contact points between the cable and the moving oscillators.  相似文献   

14.
Multiplexed piezoresistive sensor arrays hold great potential for measuring contact stress distributions for orthopedic research applications. However, their acceptance has been handicapped by output drift and the fact that their dynamic response has not been well characterized. In this report, the static and dynamic responses of one device of this class (the K-Scan piezoresistive contact stress sensor) are formally characterized using a specially made pressure vessel that provides spatially homogeneous contact stress. Drift was predominant early in static loading, reaching relationtive errors of approximately 30 percent over a 10-min period. During loading, first-order dynamic analysis showed that the time constant (and time lag) was nearly zero and there was little attenuation of the output up to 20 Hz. A deconvolution algorithm proved capable of compensating for the great majority of static drift.  相似文献   

15.
In this paper, the bending behaviors of the nanoplate with small scale effects are investigated by the nonlocal continuum theory. The governing equations for the nonlocal Mindlin and Kirchhoff plate models are derived. The expressions of the bending displacement are presented analytically. The difference between the two models is discussed and bending properties of the nanoplate are illustrated. It can be observed that the small scale effects are obvious for bending properties of the nanoplate. The half wave numbers, width ratios and elastic matrix properties also have significant influence on bending behaviors.  相似文献   

16.
The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed–fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.  相似文献   

17.
A design model is proposed to describe spatial cable-stayed systems with slipping cables. The basic variables of the displacement method are selected. A system of nonlinear equilibrium equations is derived from the condition of minimum potential energy, taking into account the large displacements of joints and the large deformations of cables. A method and formulas needed to iteratively solve the system of nonlinear equations are presented. Individual consideration is given to a cable net with prescribed tension. The computed results make it possible to fabricate and mark out cable rods and to assemble cable nets based on their geometry alone, without the need for force measurement __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 79–87, May 2006.  相似文献   

18.
ANALYSIS OF DYNAMIC RESPONSE OF AN IMPACTED ELASTIC PLATE   总被引:1,自引:0,他引:1  
ANALYSISOFDYNAMICRESPONSEOFANIMPACTEDELASTICPLATE¥(尹邦信)YinBangxin(DepartmentofCivilEngineering,SouthwestinstituteofTechnology,...  相似文献   

19.
The near resonant response of suspended, elastic cables driven by planar excitation is investigated using a three degree-of-freedom model. The model captures the interaction of a symmetric in-plane mode with two out-of-plane modes. The modes are coupled through quadratic and cubic nonlinearities arising from nonlinear cable stretching. For particular magnitudes of equilibrium curvature, the natural frequency of the in-plane mode is simultaneously commensurable with the natural frequencies of the two out-of-plane modes in 1:1 and 2:1 ratios. A second nonlinear order perturbation analysis is used to determine the existence and stability of four classes of periodic solutions. The perturbation solutions are compared with results obtained by numerically integrating the equations of motion. Furthermore, numerical simulations demonstrate the existence of quasiperiodic responses.A portion of this work was presented at the 1992 ASME Winter Annual Meeting, Anaheim, CA.  相似文献   

20.
Abstract

Fractional derivative is a widely accepted theory to describe the physical phenomena and the processes with memory responses which is defined in the form of convolution having kernels as power functions. Due to the shortcomings of power law distributions, some other forms of derivatives with few other kernel functions are proposed. This present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena for an infinite porous material subjected to the presence of distributed time-dependent heat source acting over the plane area. The heat transport equation for this problem is involving the memory dependent derivative on a slipping interval in the context of three-phase-lag (3PL) model of generalized thermoelasticity. Employing the Laplace transform as a tool, the analytical results for the distributions of the change in volume fraction field, temperature, stress, and displacement are obtained on solving the vector-matrix differential equation using eigenvalue approach. The numerical inversion of the Laplace transform is performed using the Zakian method. Excellent predictive capability is demonstrated due to the presence of memory dependent derivative and delay time also.

Communicated by Nickolay Banichuk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号