首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubilities of CO2 in 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate, and 3-methoxybutyl acetate were measured by isothermal synthesis method under pressures up to 1.2 MPa and at temperatures ranging from (293.15 to 333.15) K. Henry’s constant was calculated based on experimental data regression. The solubilities of CO2 were found to increase with decreased temperature and increased the methyl group to the molecular structure of the absorbent. Henry’s constant and volumetric solubility of selected absorbents at T = 298.15 K were compared with those of commercial absorbents and common solvents. 3-Methoxybutyl acetate showed the best performance by mole fraction, and 2-methoxyethyl acetate behaved the best by volumetric fraction. Based on Henry’s constant, thermodynamic properties such as Gibbs free energy of solution, enthalpy of solution, and absorption entropy of solution were determined. These properties are very essential for designing an absorption process.  相似文献   

2.
The speeds of sound in 1-hexanol and 2-ethyl-1-butanol have been measured over the temperature range from (293.15 to 318.15) K and at pressures up to 101 MPa. The densities have been measured within the temperature range from (283.15 to 343.15 or 353.15) K under atmospheric pressure. For the measurements, a pulse-echo-overlap method and a vibrating tube densimeter have been used. Additionally, in the case of 2-ethyl-1-butanol, the isobaric heat capacities from T = (293.15 to 323.15) K at atmospheric pressure have been measured by means of a DSC calorimeter. The experimental results are then used to calculate the densities and isobaric heat capacities as a function of temperature and pressure by means of a numerical integration technique. The effects of pressure and temperature on these and the related properties are discussed. Densities are correlated by means of the Tait equation.  相似文献   

3.
In the present work, density and viscosity of two binary mixtures of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) with 1-butyl-3-methylimidazolium acetate ([bmim][acetate]) are measured. The experiments were carried out at atmospheric pressure and at T = (293.15 to 343.15) K for density and from 293.15 K to 353.15 K for viscosity over the whole range of mole fraction. Using the density and viscosity results, several physical and thermodynamic properties such as excess molar volumes (VE), coefficients of thermal expansions (α), viscosity deviation (Δη),molar activation entropy (ΔS), molar activation enthalpy (ΔH) and molar activation Gibbs free energy (ΔG) for these binary mixtures are calculated.The experimental results of the density and viscosity for the pure systems as well as the binary systems show a decrease with increasing temperature as expected. The results of density measurements show that over all ranges of temperatures investigated the density of the pure components show the following trend: DEA > [bmim][acetate] > MDEA. Therefore, in the binary mixtures of the (MDEA + [bmim][acetate]), the density of the mixture reduces with decreasing concentration of the ionic liquid and for the (DEA + [bmim][acetate]) mixture the density of the blend enhances to reduce the concentration of the ionic liquid. Moreover, the calculated excess molar volumes show a positive deviation from ideality for the two binary mixtures. The behaviour of change of viscosity against concentration for the (MDEA + [bmim][acetate]) system is different from the (DEA + [bmim][acetate]) mixture so that for the first system the value of the viscosity rises with increasing [bmim][acetate] mole fraction, but in the second system there is a minimum viscosity point in the DEA-rich region.  相似文献   

4.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

5.
Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures.  相似文献   

6.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

7.
We report measurements of the speed of sound in mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. The measurements were made using a dual path pulse-echo apparatus operating at a frequency of 5 MHz. We have also measured the isobaric specific heat capacity of each mixture as a function of temperature at ambient pressure, by means of a Setaram DSC III microcalorimeter. The experimental results have been combined with literature data for the density of the same mixtures as a functions of temperature at ambient pressure to obtain the density, isobaric specific heat capacity, and other thermodynamic properties at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. Detailed comparisons with the literature data are presented.  相似文献   

8.
Densities ρ, speeds of sound u, and refractive indices nD were measured from T = (278.15 to 343.15) K. Dynamic viscosities η were measured from T = (293.15 to 323.15) K. Surface tensions σ were determined from T = (288.15 to 313.15) K. The physical properties data were measured at atmospheric pressure. The coefficients of thermal expansion αp of the ionic liquids were calculated from the experimental values of the density at several temperatures. The Parachor method was used to predict the densities, the refractive indices, and the surface tensions of the ionic liquids, and a comparison between experimental and predictive values was made at T = 298.15 K.  相似文献   

9.
The densities of tetraphenylphosphonium bromide, sodium tetraphenylborate, lithium perchlorate, sodium perchlorate and lithium bromide in γ-butyrolactone at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and speed of sound at 298.15 K have been measured. From these data apparent molar volumes VΦ at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and the apparent molar isentropic compressibility KS,Φ, at T = 298.15 K of the salts have been determined. The apparent molar volumes and the apparent molar isentropic compressibilities were fitted to the Redlich, Rosenfeld and Mayer equation as well as to the Pitzer and Masson equations yielding infinite dilution data. The obtained limiting values have been used to estimate the ionic data of the standard partial molar volume and the standard partial isentropic compressibility in γ-butyrolactone solutions.  相似文献   

10.
The effect of temperature on the physical properties of some ionic liquids was investigated. Density, refractive index, surface tension, dynamic and kinematic viscosities of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions were measured at various temperatures (density from T = (278.15 to 363.15) K, refractive index from (293.15 to 343.15) K, surface tension from (283.15 to 333.15) K, dynamic viscosity from (283.15 to 368.15) K, and kinematic viscosity from (298.15 to 363.15) K). The volumetric properties for the ionic liquids were also calculated from the experimental values of the density at T = 298.15 K. The Vogel–Fulcher–Tammann (VFT) equation was applied to correlate experimental values of dynamic and kinematic viscosities as a function of temperature. As well, the relation between density and refractive index was correlated satisfactorily with several empirical equations such as Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, Newton and Modified–Eykman. Finally, the relation between surface tension and viscosity was investigated and the parachor method was used to predict density, refractive index and surface tension of the ionic liquids.  相似文献   

11.
In order to study the influence of amine structure on absorption of carbon dioxide, enthalpies of solution of CO2 in 2.50 mol · L?1 aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (THAM), 2-[2-(dimethyl-amino)ethoxy] ethanol (DMAEOE), and 3-dimethyl-amino-1-propanol (DMAP) were measured. The enthalpies of solution are determined as function of gas loading charge (moles of CO2/mole of amine), at temperatures (313.15 and 353.15) K, and pressures range from (0.5 to 2) MPa. Measurements were carried out using a flow calorimetric technique. CO2 solubilities in the aqueous solutions of amine are derived from calorimetric data. Molar volumes of aqueous amine solutions required to handle calorimetric data were determined at 303.15 K using a vibrating tube densimeter. Experimental enthalpies of solution are discussed on the basis of amines alkalinity.  相似文献   

12.
The dissociation constants, pKa, of monoethanolamine (MEA), N-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), 2(2-aminoethyl)etanolamine (AEEA), and piperazine (Pz) were measured by potentiometric titration over the temperature range (298.15 to 363.15) K. Enthalpies of protonation, ΔHp, were measured calorimetrically at temperatures from (298.15 to 393.15) K for MEA, MDEA, and AMP, and from (298.15 to 353.15) K for AEEA and Pz. In addition, the effect of the ionic strength of the solutions on the protonation of MDEA was studied using NaCl as background salt {(0 to 5.5) mol/kg-H2O)}. Correlations for the reaction equilibrium constants for proton dissociation are proposed for the studied amines based on the experimental data from literature and from this work. Both experimental enthalpy data and dissociation constants were used for fitting. The results from this work may be used for thermodynamic modeling of CO2 capture processes using amines.  相似文献   

13.
Synthesis of new ionic liquids (ILs) viz. 1-butyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [BCN3Py][NTf2], 1-hexyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN3Py][NTf2], 1-hexyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN4Py][NTf2], and 1-octyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [OCN3Py][NTf2] were performed. The specific basic characterization of new compounds by NMR spectra, elementary analysis, water content and glass transition temperature as well as melting temperature, enthalpy of fusion and decomposition of compounds TG/DTA determined by the differential scanning calorimetry, DSC is presented. The heat capacity was measured at three temperatures (298.15, 323.15, and 353.15) K and at pressure 0.1 MPa. The effect of temperature on the density and viscosity is reported over the temperature range from (293.15 to 363.15) K and at 0.1 MPa. The density and viscosity correlation for these systems was provided by an empirical polynomial. From the density–temperature dependence, the isothermal expansion coefficient (volume expansivity), α, was calculated. The surface tension of pure ionic liquids was measured at 0.1 MPa at five temperatures (298.15, 308.15, 318.15, 328.15, and 338.15) K. The surface thermodynamic functions such as surface entropy and enthalpy, critical temperatures according to the Eötvös and Guggenheim definition and the total surface energy of the ILs studied were derived from the temperature dependence of the surface tension values. The parachor and speed of sound for pure ionic liquids were described within a range of temperature from (298.15 to 338.15) K. A qualitative analysis on these quantities in terms of molecular interactions is reported.  相似文献   

14.
《Fluid Phase Equilibria》2004,218(2):261-267
Gas solubility of carbon dioxide in an aqueous solution of 32.5 wt.% N-methyldiethanolamine and 12.5 wt.% diethanolamine with 4, 6, and 10 wt.% 2-amino-2-methyl-1-propanol has been measured, at 313.15, 343.15, and 393.15 K, over a range of pressure from 3 to 2000 kPa, using a chromatographic method for analysis of the liquid phase. The results of the gas solubility are given as the partial pressure of CO2 against its mole ratio α (mol CO2/mol alkanolamine) and its mole fraction at each temperature studied. The solubility of CO2 in all the systems studied decreases with an increase in temperature and increases with an increase in the partial pressure of CO2 at a given temperature and it is a function of the concentration of the mixture of alkanolamines in solution. The enthalpy of solution of CO2 has been calculated from the experimental solubility data.  相似文献   

15.
《Fluid Phase Equilibria》2005,233(1):81-85
Using the steady-state method, the solubilities of terephthalic acid(1) in binary acetic acid(2) + water(3) solvent mixtures in a specially contrived vessel have been measured as a function of temperature in the temperature range 423.15–513.15 K and solvent composition range from x2 = 1.000 to 0.3103 (molar fraction). The experimental solubilities are correlated with the Apelblat equation. The calculated results show good agreement with the experimental solubilities.  相似文献   

16.
Density, speed of sound and refractive index values of (diethyl carbonate  + n -decane), were measured at the temperatures (288.15, 293.15, 298.15, and 308.15) K and atmospheric pressure. In addition, dielectric permittivities have been measured for the same mixture and at the same temperatures except at T =  293.15 K. Excess molar volumes, changes of isentropic compressibility on mixing, changes of refractive index on mixing and changes of dielectric permittivity on mixing were computed from the experimental data. The excess molar volumes were compared with predictions from the Nitta–Chao model.  相似文献   

17.
Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10−2 at T = 298.15 K) and lowest in pure water (1.43 · 10−7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib.  相似文献   

18.
The density and surface tension of the pure ionic liquid 1-butyl-3-methyl-imidazolium l-lactate were measured from T (293.15 to 343.15) K. The coefficient of thermal expansion, molecular volume, standard entropy, lattice energy, surface entropy, surface enthalpy, and enthalpy of vaporization were calculated from the experimental values. Density and surface tension were also determined for binary mixtures of {1-butyl-3-methyl-imidazolium l-lactate + water/alcohol (methanol, ethanol, and 1-butanol)} systems over the whole composition range from T (298.15 to 318.15) K at atmospheric pressure. The partial molar volume, excess partial molar volume and apparent molar volume of the component IL and alcohol/water in the binary mixtures were discussed as well as limiting properties at infinite dilution and the thermal expansion coefficients of the four binary mixtures. The surface properties of the four binary mixtures were also discussed.  相似文献   

19.
Solubility data of 1,4-diaminoanthraquinone (C.I. Disperse Violet 1) and 1,4-bis(ethylamino)anthraquinone (C.I. Solvent Blue 59) in supercritical carbon dioxide (sc-CO2) have been measured at the temperatures of (323.15, 353.15, and 383.15) K and over the pressure range from (12.5 to 25.0) MPa by a flow-type apparatus. The solubility of two anthraquinone dyestuffs was obtained over the mole fraction ranges of (1.3 to 26.1) · 10−7 for 1,4-diaminoanthraquinone (C.I. Disperse Violet 1) and (1.1 to 148.5) · 10−7 for 1,4-bis(ethylamino)anthraquinone (C.I. Solvent Blue 59). The experimental results have been correlated with the empirical equations of Mendez-Santiago–Teja and Kumar–Johnston expressed in terms of the density of sc-CO2, and also analyzed thermodynamically by the regular solution model with the Flory–Huggins theory and the Peng–Robinson equation of state modified by Stryjek and Vera (PRSV-EOS) with the conventional mixing rules. Good agreement between the experimental and calculated solubilities of the dyestuffs was obtained.  相似文献   

20.
The speeds of sound in 1,4-butanediol have been measured in the temperature range from (298 to 318) K at pressures up to 101 MPa by the pulse-echo-overlap method. The densities have been measured in the temperature range from (293.15 to 353.15) K under atmospheric pressure with a vibrating tube densimeter. Based on the experimental results, the densities, isobaric heat capacities, isobaric coefficients of thermal expansion, isentropic and isothermal compressibilities, as well as the internal pressure as function of temperature and pressure have been calculated. The effects of pressure and temperature are discussed and compared with the previous results for 1,2- and 1,3-butanediols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号