首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper presents a semi-analytical approach to solve the eigenproblem of an acoustic cavity with multiple elliptical boundaries. To satisfy the Helmholtz equation in the elliptical coordinate system, the multipole expansion for the acoustic pressure is formulated in terms of angular and radial Mathieu functions. The boundary conditions are satisfied by uniformly collocating points on the boundaries. The acoustic pressure at each point is directly calculated in each elliptical coordinate system. In different coordinate systems, the normal derivative of the acoustic pressure is calculated by using the appropriate directional derivative, an alternative to the addition theorem. By truncating the multipole expansion, a finite linear algebraic system is derived. The direct searching approach is employed to determine the natural frequencies by using the singular value decomposition (SVD). Numerical results are widely discussed for several examples including an elliptical cavity, a confocal elliptical annulus cavity and an elliptical cavity with two elliptical cylinders. The accuracy and numerical convergence of the presented method is validated by comparison with available results from the analytical method and the commercial finite-element code ABAQUS. No spurious eigensolutions are found in the proposed formulation. Excellent accuracy and fast rate of convergence are the key features of the present method thanks to its semi-analytical feature.  相似文献   

2.
任朗 《物理学报》1961,17(7):321-328
本文利用椭圆柱形坐标系,严格地分析了具有任意偏心度的椭圆截面的无限长理想导电的金属棒,放在有损耗的均匀各向同性的无限介质中,对从任意方向入射的均匀平面波的散射问题;并将散射场表示为马许函数。  相似文献   

3.
利用部分波展开法求解得到了Gauss声束入射下刚性和非刚性椭圆柱的声散射系数,推导了一般情况下的声辐射力矩表达式.在此基础上,通过一系列数值仿真详细分析了离轴距离、入射角度和束腰半径对声辐射力矩的影响.结果表明:正向与负向声辐射力矩均可以在一定条件下存在;低频情况下刚性椭圆柱比非刚性椭圆柱更容易产生较强的声辐射力矩;特定频率的入射声场可以激发出非刚性椭圆柱不同阶的共振散射模式,因而非刚性椭圆柱的声辐射力矩峰值与频率的关系更密切;增加束腰半径有利于扩大散射截面,进而增加椭圆柱的声辐射力矩.该研究结果预期可以为利用声辐射力矩实现粒子的可控旋转和流体黏度的反演提供一定的理论指导.  相似文献   

4.
In a recent paper we developed a formalism that fully accommodates the mutual interactions among scatterers separable by parallel planes. The total fields propagating away from these planes are the unknowns of a system of difference equations. Each scatterer is characterized by a scattering function that expresses the scattered wave amplitude as a function of the incident and scattered wavevectors for a unit-amplitude plane wave scattered from the object in isolation. This function can be derived completely from the scattered far field with the help of analytic continuation. For a two-scatterer system the mutual-interaction equations reduce to a single Fredholm integral equation of the second kind. It turns out that analytic solutions are tractable for those scattering functions that are Dirac deltas or a sum of products of separable functions of the incident and scattered wavevectors. Scattering functions for planes and isotropic scatterers, as well as electric and magnetic dipoles all possess this property and are considered. The exact scattering functions agree with results obtained by analytic continuation. This paper consists of two parts. Part I derives analytic solutions for two discrete scatterers (isotropic scatterers. electric dipoles, magnetic dipoles). Part II is devoted to scattering from an object (isotropic or dipole scatterer) near an interface separating two semi-infinite uniforn-media. Because the results in this paper are exact, the effects of near-field interactions can be assessed. The forms of the scattering solutions can be adapted to objects that are both radiating and scattering.  相似文献   

5.
This paper considers the two-dimensional problem of scattering of a plane wave incident on an infinite cylinder that is coated with strips of pressure-release material extending over quadrants on the illuminated and shadowed sides, with the remainder of the surface considered to be rigid. Transitions from soft to rigid surfaces correspond to discontinuous boundary conditions. Ideal fluid theory predicts an infinite pressure gradient at these transitions, which suggests that viscous effects may be significant. The present work is a quantitative analysis of the global effect on acoustic scattering of viscosity effects arising in the vicinity of the discontinuity. The analysis represents the scattered field in terms of acoustic and vortical contributions. Both contributions are represented by series expansions in terms of azimuthal harmonics and associated cylindrical wave functions. The amplitudes of these harmonics are determined by satisfying a pair of discontinuous boundary conditions. Results obtained by using the method of weighted residuals are shown to be less accurate than those obtained from a collocation procedure. The results for surface pressure and farfield directivity indicate that viscous effects are important only if the Reynolds number is extremely small.  相似文献   

6.
研究水下涡声散射特性,在目标探测和流场声成像领域具有重要意义。针对水下低马赫数涡流场前向声散射建立了数值计算方法,探究了其形态函数和指向性。首先,基于摄动声学理论给出了考虑流声耦合作用的涡声散射模型,采用时域有限差分结合完美匹配层构建了数值求解方法;随后,在算法验证的基础上,预报分析了高斯涡涡核尺寸在1~10 m,同时入射平面波无量纲波数在1~10范围内,涡流场强度对前向声散射特性的影响。结果表明,低马赫数下,声散射场具有对称性,且有明显的主瓣和指向性。其前向散射形态函数随入射波波数、涡核尺寸、涡流场强度增加而增大;主瓣方位角随波数增加而趋近入射波传播方向。   相似文献   

7.
Abstract

In a recent paper we developed a formalism that fully accommodates the mutual interactions among scatterers separable by parallel planes. The total fields propagating away from these planes are the unknowns of a system of difference equations. Each scatterer is characterized by a scattering function that expresses the scattered wave amplitude as a function of the incident and scattered wavevectors for a unit-amplitude plane wave scattered from the object in isolation. This function can be derived completely from the scattered far field with the help of analytic continuation. For a two-scatterer system the mutual-interaction equations reduce to a single Fredholm integral equation of the second kind. It turns out that analytic solutions are tractable for those scattering functions that are Dirac deltas or a sum of products of separable functions of the incident and scattered wavevectors. Scattering functions for planes and isotropic scatterers, as well as electric and magnetic dipoles all possess this property and are considered. The exact scattering functions agree with results obtained by analytic continuation. This paper consists of two parts. Part I derives analytic solutions for two discrete scatterers (isotropic scatterers. electric dipoles, magnetic dipoles). Part II is devoted to scattering from an object (isotropic or dipole scatterer) near an interface separating two semi-infinite uniforn-media. Because the results in this paper are exact, the effects of near-field interactions can be assessed. The forms of the scattering solutions can be adapted to objects that are both radiating and scattering.  相似文献   

8.
以水中紧密排列的平行圆柱体群为对象,研究平面超声脉冲经多重散射后的透射波性质,通过分析其中头波和散射波的特征获得对应的多重散射参数.对直径随机分布、位置无序排列、数量密度约100个/cm2、面积占空比约0.53的非接触圆柱体群,采用中心频率2.5 MHz的宽带脉冲波入射。为解决透射信号在时域表现出随机性的问题,将散射体尺寸、分布都相同但位置分布不同的多个模型仿真的透射波叠加平均后用于分析.在频域对头波的宽带衰减系数进行分析,并在时域研究散射波声强的时间演化曲线,获得了系统的弹性平均自由程、传输平均自由程等多重散射参数。经多重散射后,透射波中的头波表现出相干性,由不相干近似理论可对其对应的散射参数进行定性描述;散射波是不相干的,其对应的多重散射参数可近似利用扩散近似理论获得。   相似文献   

9.
气泡线性振动时近海面气泡群的声散射   总被引:1,自引:0,他引:1       下载免费PDF全文
海洋中的不同成因的气泡群是常见的水下声学目标及声呐混响源,因此对水下气泡群进行声学建模意义重大。利用有效媒质理论描述气泡群内部的相速度及声衰减变化,并考虑到海洋中气泡群往往产生于不同界面附近,进一步利用球面波叠加原理描述海面对气泡群散射声波的再辐射,导出了平海面作用下气泡群声散射截面的一般表达式,建立了其声散射模型,研究了单一尺寸及混合尺寸气泡群的声学特性。数值分析表明,气泡群的谐振频率会随其半径或孔隙率增加而降低;由于海面的存在,气泡群声散射截面会随频率进行周期性变化,且随气泡群远离海面,这一变化逐渐加剧。此外,若气泡的黏滞阻尼项在全部阻尼项中占比较高,气泡群声散射强度会在谐振频率附近存在起伏振荡。该模型可为近海面鱼群、气泡羽流及海底泄漏的甲烷气体的声学建模提供一定的理论基础。  相似文献   

10.
A modified integral Werner method is used to calculate pressure scattered by an axisymmetric body immersed in a perfect and compressible fluid subject to a harmonic acoustic field. This integral representation is built as the sum of a potential of a simple layer and a potential of volume. It is equivalent to the exterior Helmholtz problem with Neumann boundary condition for all real wave numbers of the incident acoustic field. For elastic structure scattering problems, the modified Werner method is coupled with an elastodynamic integral formulation in order to account for the elastic contribution of the displacement field at the fluid/structure interface. The resulting system of integral equations is solved by the collocation method with a quadratic interpolation. The introduction of a weighting factor in the modified Werner method decreases the number of volume elements necessary for a good convergence of results. This approach becomes very competitive when it is compared with other integral methods that are valid for all wave numbers. A numerical comparison with an experiment on a tungsten carbide end-capped cylinder allows a glimpse of the interesting possibilities for using the coupling of the modified Werner method and the integral elastodynamic equation used in this research.  相似文献   

11.
The scattered wave formalism is developed for a quantum subsystem interacting with the external environment through open boundaries. The total wave function is divided into incident and scattered components and Markovian outgoing wave boundary conditions are applied to the scattered wave function. This formalism significantly reduces the computational effort relative to other methods which rely on Green functions and memory kernels. The method is applied to one-dimensional barrier scattering and to a three-dimensional model for the field effect transistor.  相似文献   

12.
The properties of the scattered acoustic vector fields generated by simple spheres illuminated by monotonic continuous wave (CW) plane waves are investigated. Analytical solutions are derived from general acoustic pressure scattering models and analyzed for wave numbers in the resonance region. Of particular interest is the understanding of the characteristics of the scattered acoustic vector field in the near-to-far-field transition region. The separable active and reactive components of the acoustic intensity are used to investigate the structural features of the scattered field components. Numerical results are presented for the near and transition regions for a rigid sphere. A method of mapping nulls in the scattered intensity field components is described. The analysis is then extended to include a simple fluid-filled boundary and finally the evacuated thin-walled shell. Near field acoustic intensity field structures are compared against mechanical material properties of vacuous shells. The ability to extract scattered field features is illustrated with measurements obtained from a recent in-air experiment using an anechoic chamber and acoustic vector sensor probes to measure the scattered acoustic vector field from rigid spheres.  相似文献   

13.
The paper considers acoustic wave scattering by inhomogeneities with a small wave size using the Green’s function apparatus, which makes it possible universally to take into account both the refraction and density components of an inhomogeneity. Estimates for the multipole components of a field scattered by a nonresonance inhomogeneity are presented. For an inhomogeneity with small dimensions, it suffices to consider only monopole and dipole scattering. These conclusions are confirmed by an analysis of the field scattered by a circular cylinder with a small wave radius. The results are used to numerically simulate a Lippmann–Schwinger equation. The form of the discretized matrix Green’s function for identical values of the spatial arguments is presented. This makes it possible to take into account multiple scattering processes within a discretization element with a small wave size. Its use automatically fulfills the relations between the phase and amplitude of secondary acoustic field sources.  相似文献   

14.
We use the Born approximation of the perturbation method to solve the problem of scattering of a harmonic Rayleigh surface acoustic wave by a weak-contrast inhomogeneity that is small compared with the wavelength and is located in a solid half-space near its boundary. The material of the inhomogeneity differs from the material of the half-space only in its density. The Rayleigh wave incident on the inhomogeneity is excited by a monochromatic surface force source acting normally to the half-space boundary. We derive expressions for the displacement fields in the scattered spherical compressional and shear (SV- and SH-polarized) waves. Scattering of the Rayleigh wave into a Rayleigh wave is studied in detail. We find expressions for the vertical and horizontal components of the displacement vector in the scattered Rayleigh wave as well as its radiated power. It is shown that the field of the scattered surface wave is mainly formed by vertical oscillations of the inhomogeneity in the field of the incident wave. In this case, the radiated power for the scattered Rayleigh wave formed by vertical motion of the inhomogeneity in the incident-wave field depends on the depth of the inhomogeneity as the fourth power of the function describing the well-known depth dependence of the vertical displacements in the Rayleigh surface wave. Correspondingly, the dependence of the radiated power for the scattered Rayleigh wave formed by horizontal motion of the inhomogeneity depends on its location depth as the fourth power of the depth dependence of the horizontal displacements in the Rayleigh surface wave. We perform calculations of the ratio between the powers of the scattered and incident Rayleigh waves for different ratios between the velocities of the compressional and shear waves in a solid. It is shown that the radiated power for the scattered surface wave decreases sharply with increasing depth of the subsurface-inhomogeneity location. Thus, the scattering of a Rayleigh wave into a Rayleigh wave is fairly efficient only when the location depth of the inhomogeneity does not exceed about one-third of the wavelength of the shear wave in an elastic medium.  相似文献   

15.
基于等效原理和互易性定理,研究了N个相互平行二维柱体对平面波/高斯波束的电磁散射特性,给出了求解N阶散射场公式.一阶散射可通过求解单个柱体的散射场得到,但对于高阶散射场而言,由于耦合散射的复杂性,很难给出精确的解析解.为了解决这一问题,借助等效原理和互易性定理给出了求解N阶散射场的面积分公式.只要给出柱体的i-1阶散射场及相关目标表面上的等效电流和(或)等效磁流,就可应用此公式求解i阶散射场.应用该近似方法计算了相互平行非均匀等离子体涂层导体圆柱的单/双站散射宽度,讨论了束腰半径、等离子体涂层厚度、电子密度、碰撞频率及雷达频率等对散射结果的影响.  相似文献   

16.
The use of finite difference schemes to compute the scattering of acoustic waves by surfaces made up of different materials with sharp surface discontinuities at the joints would, invariably, result in the generations of spurious reflected waves of numerical origin. Spurious scattered waves are produced even if a high-order scheme capable of resolving and supporting the propagation of the incident wave is used. This problem is of practical importance in jet engine duct acoustic computation. In this work, the basic reason for the generation of spurious numerical waves is first examined. It is known that when the governing partial differential equations of acoustics are discretized, one should only use the long waves of the computational scheme to represent or simulate the physical waves. The short waves of the computational scheme have entirely different propagation characteristics. They are the spurious numerical waves. A method by which high wave number components (short waves) in the wave scattering process is intentionally removed so as to minimize the scattering of spurious numerical waves is proposed. This method is implemented in several examples from computational aeroacoustics to illustrate its effectiveness, accuracy and efficiency. This method is also employed to compute the scattering of acoustic waves by scatterers, such as rigid wall acoustic liner splices, with width smaller than the computational mesh size. Good results are obtained when comparing with computed results using much smaller mesh size. The method is further extended for applications to computations of acoustic wave reflection and scattering by very small surface inhomogeneities with simple geometries.  相似文献   

17.
The spatial field distribution is the most frequent subject of standard electrostatic analysis. In this paper the system of several strips in external spatial-harmonic electric field, which causes the charge distribution on them, is considered. The solution is constructed as a linear combination of certain template functions, evaluated in spectral domain and satisfying the electric boundary conditions on the strips. The problem is analogous to wave scattering; this justifies the application of the wave-scattering terminology (i.e. incident wave for the external field and the corresponding ‘radiation condition’) in the considered nonstandard ‘electrostatic scattering’ problem. The strip total charge and the Bloch harmonics of the ‘scattered’ field are evaluated.  相似文献   

18.
For the purpose of revealing the dynamic properties of elliptical inclusion in the half-space, solving the problem of scattered SH-wave, the method of ‘conformal mapping’ is used to map an elliptical inclusion into a circular inclusion. The displacement field and the stress field of the elliptical inclusion while bearing out-plane line source load are obtained by Green’s function method. Then, infinite system of linear equations is established by displacement and stress continuous boundary conditions, to solve unknown coefficients of wave function. Finally, the ‘partial debonding curve model’ is constructed, and the equal stress but opposite in direction is applied in the partial debonding curve. It is obtained the total displacement field of the elliptical inclusion with a partially debonding curve in the half-space. Numerical results demonstrate that dynamic stress concentration factor is influenced in the incident angle, the frequency of incident wave, the depth of inclusions and the partial debonding curve angle.  相似文献   

19.
The scattering of a plane acoustic wave by an infinite penetrable or impenetrable circular cylinder, parallel with another one, also penetrable or impenetrable, of acoustically small radius, is considered. The method of separation of variables, in conjunction with translational addition theorems for cylindrical wave functions, is used. Analytical expressions are obtained for the scattered pressure field and the various scattering cross sections, for normal incidence. Numerical results are given for penetrable and impenetrable cylinders.  相似文献   

20.
A solution to the two-dimensional scattering properties of a conducting elliptic cylinder coated with a homogeneous anisotropic elliptical shell is obtained. The conducting elliptic cylinder and the shell have the same eccentricity. The transmitted and scattered fields of the anisotropic shell are expressed as Mathieu functions in elliptic coordinates. The unknown coefficients of the scattered and transmitted fields are solved with the aid of the boundary conditions and the Galerkin's method. Only the transverse magnetic (TM) polarization is presented and the transverse electric (TE) polarization can be obtained in the same way. Some numerical results are presented and discussed. As expected the result is in agreement with that available when the coated elliptic cylinder degenerates to a coated circular one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号