首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the free energy of the classical Heisenberg model converges to the free energy of the Gaussian in the low-temperature limit. The limit is uniform as the field is taken to zero.  相似文献   

2.
The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.  相似文献   

3.
The thermodynamics of moving bodies is developed from first principles. To do this, it is necessary to augment the laws of thermodynamics with a new principle, which asserts the impossibility of thermal equilibrium between bodies in relative motion. Clausius' theorem is generalized to heat flow between moving systems, and leads naturally to the identification of heat and temperature as Lorentz scalars. The formulation of relativistic statistical mechanics is carried out and the correspondence with classical quantities is made. The quantum distribution laws are generalized to the relativistic case, and are found to differ from their accepted relativistic form.  相似文献   

4.
We investigate the Cattaneo–Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method(OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo–Christov heat flux model than those in the Fourier's law of heat conduction.  相似文献   

5.
The sequence of Feynman-Trotter approximations to the thermal Feynman path integral for the simple harmonic oscillator is obtained in an easily analyzable closed form. While it converges pointwise at every non-zero temperature to the quantum thermal propagator, the sequence manifests a highly non-uniform behaviour in the zero temperature limit—every one of its elements tends toward theclassical ground state (static equilibrium). For high order elements of the sequence, there is an abrupt “collapse” from the quantum to the classical ground state with falling temperature, a phenomenon which bears a possibly misleading resemblance to a phase transition. It is shown that Feynman-Trotter sequences for many simple systems other than the harmonic oscillator also have all their elements tending to the classical static equilibrium state in the zero temperature limit.  相似文献   

6.
王颖泽  宋新南  刘栋 《物理学报》2013,62(21):214601-214601
当热作用时间或受热器件结构尺寸呈现微尺度特征时, 热流运动的惯性效应将对热量的传递过程产生显著地影响. 基于热质的概念, 依据牛顿力学原理引入用于描述热质运动的热波方程, 结合各向同性材料的本构关系, 构建了计及热流运动惯性效应的广义热弹性动力学模型. 利用超常传热的微尺度特征, 采用解析的方法对半无限大体外表面受热冲击作用的一维问题进行了渐近求解. 通过对热波、热弹性波的传播和各物理场分布的分析以及与已有广义热弹性理论预测结果的对比, 揭示了热流运动的惯性效应对热弹性行为的影响. 结果表明:热量的传递除了受到热流加速的时间惯性影响之外, 热流运动的空间惯性也对传热行为产生影响, 当计及空间惯性时, 热波、热弹性波的波速、波前位置, 各物理场的建立时间、阶跃峰值及阶跃间隔均受到不同程度的影响. 关键词: 热惯性 热质运动 广义热弹性动力学模型 渐近分析  相似文献   

7.
Modifying slightly Kubo's formulation of perturbation theory to take care of the fact that generalized susceptibility may not be zero at infinite frequency, we establish, in the classical limit, a general relation between covariance and generalized susceptibility. The relation is then applied to evaluate the covariances of the magnetic flux, currents, and magnetization of a superconducting cylinder. Expressions for the spectra of magnetic flux and magnetization are also obtained.  相似文献   

8.
Unsteady free convection flows of viscous fluids over a vertical circular cylinder are investigated by taking in consideration thermal and mass stratification and the thermal memory effects. The mathematical model of thermal transport is based on the fractional generalized Fourier's law for thermal flux with the kernel of power-law kind. In this model the histories of the temperature gradient influence the thermal and mass transport process and the fluid motion. On the cylinder's surface the temperature (or the thermal flux) and solute concentration are constant. Solutions in the transformed domain for the perturbation temperature and concentration and fluid velocity are determined using the Laplace transform coupled with the classical method for the ordinary non-homogeneous differential equations. The inverse Laplace transforms are obtained numerically by employing the Stehfest's algorithm. Solutions for the case corresponding to classical Fourier's law are obtained as particular case of general solutions by taking the memory parameter equal to zero. The influence of the thermal memory and of thermal and mass stratifications is numerically and graphically analyzed by using the software Mathcad 15.  相似文献   

9.
Quantum Brownian motion, described by the Caldeira–Leggett model, brings insights to the understanding of phenomena and essence of quantum thermodynamics, especially the quantum work and heat associated with their classical counterparts. By employing the phase-space formulation approach, we study the heat distribution of a relaxation process in the quantum Brownian motion model. The analytical result of the characteristic function of heat is obtained at any relaxation time with an arbitrary friction coefficient. By taking the classical limit, such a result approaches the heat distribution of the classical Brownian motion described by the Langevin equation, indicating the quantum–classical correspondence principle for heat distribution. We also demonstrate that the fluctuating heat at any relaxation time satisfies the exchange fluctuation theorem of heat and its long-time limit reflects the complete thermalization of the system. Our research study justifies the definition of the quantum fluctuating heat via two-point measurements.  相似文献   

10.
We study a variant of Davies' model of heat conduction, consisting of a chain of (classical or quantum) harmonic oscillators, whose ends are coupled to thermal reservoirs at different temperatures, and where neighboring oscillators interact via intermediate reservoirs. In the weak coupling limit, we show that a unique stationary state exists, and that a discretized heat equation holds. We give an explicit expression of the stationary state in the case of two classical oscillators. The heat equation is obtained in the hydrodynamic limit, and it is proved that it completely describes the macroscopic behavior of the model.  相似文献   

11.
基于弱非线性热声理论,对热声换热器的换热特性进行了理论研究.获得了平行平板通道内二阶周期平均热流的解析解,并指出存在临界声导率比的模|Ya|_(cr)~I,使得二阶周期平均热流为零.当实际声导率比的模大于|Ya|_(cr)~I时,振荡流体从外热源吸热,为吸热器;当实际声导率比的模小于|Ya|_(cr)~I时,振荡流体向外放热,为放热器.获得了平行平板通道内二阶周期平均温度的解析解.计算分析了工作流体的物性参数、流动参数以及声导率比对二阶周期平均温度分布的影响,为进一步考察换热系数提供了依据。  相似文献   

12.
We consider the 2D Navier–Stokes system, perturbed by a white in time random force, proportional to the square root of the viscosity. We prove that under the limit “time to infinity, viscosity to zero” each of its (random) solution converges in distribution to a non-trivial stationary process, formed by solutions of the (free) Euler equation, while the Reynolds number grows to infinity. We study the convergence and the limiting solutions.  相似文献   

13.
A numerical model is constructed to predict transient opposed-flow flame spread behaviour in a channel flow over a melting polymer. The transient flame is established by initially applying a high external radiation heat flux to the surface. This is followed by ignition, transition and finally steady opposed-flow flame spread. The physical phenomena under consideration include the following: gas phase: channel flow, thermal expansion and injection flow from the pyrolyzed fuel; condensed phase: heat conduction, melting, and discontinuous thermal properties (heat capacity and thermal conductivity) across the phase boundary; gas-condensed phase interface: radiation loss. There is no in-depth gas radiation absorption in the gas phase. It is necessary to solve the momentum, species, energy and continuity equations in the gas along with the energy equation(s) in the liquid and solid. Agreement is obtained between the numerical spread rate and a flame spread formula. The influence of the gas flow is explored by comparing the Navier-Stokes (NS) and Oseen (OS) models. An energy balance analysis describes the flame-spread mechanism in terms of participating heat transfer mechanisms.  相似文献   

14.
对立式低温容器在真空丧失条件下的内部热分层现象进行了分析,采用双流体模型结合CFD求解器计算了立式低温容器内的流动及传热过程,考察了侧壁及底部热通量对液体热分层现象的影响。结果表明:侧壁热通量较底部热通量更易使容器内部产生热分层;容器内部形成的环流及其成长是导致热分层及温度突跳的根本原因。  相似文献   

15.
We report heat dissipation times in semiconductor nanocrystals of CdSe. Specifically, a previously unresolved, subnanosecond decay component in the low-temperature photoluminescence decay dynamics exhibits longer decay lifetimes (tens to hundreds of picoseconds) for larger nanocrystals as well as a size-independent, ~25-meV spectral shift. We attribute the fast relaxation to transient phonon-mediated relaxation arising from nonequilibrium acoustic phonons. Following acoustic phonon dissipation, the dark exciton state recombines more slowly via LO-phonon assistance resulting in the observed spectral shift. The measured relaxation time scales agree with classical calculations of thermal diffusion, indicating that interfacial thermal conductivity does not limit thermal transport in these semiconductor nanocrystal dispersions.  相似文献   

16.
We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and vanishes at infinity, the dynamics tends diffusively to equilibrium. The solution is the sum of a local equilibrium state, associated to conserved quantities that diffuse to zero, and fast variables that are slaved to the slow ones. This slaving implies the Fourier law, which relates the induced currents to the gradients of the conserved quantities. Partially supported by the Belgian IAP program P6/02. Partially supported by the Academy of Finland.  相似文献   

17.
We show that the Wald Noether-charge entropy is canonically conjugate to the opening angle at the horizon. Using this canonical relation, we extend the Wheeler–DeWitt equation to a Schrödinger equation in the opening angle, following Carlip and Teitelboim. We solve the equation in the semiclassical approximation by using the correspondence principle and find that the solutions are minimal uncertainty wavefunctions with a continuous spectrum for the entropy and therefore also of the area of the black hole horizon. The fact that the opening angle fluctuates away from its classical value of 2π indicates that the quantum black hole is a superposition of horizonless states. The classical geometry with a horizon serves only to evaluate quantum expectation values in the strict classical limit.  相似文献   

18.
This paper is concerned with the simulation of a turbulent flow submitted to a cyclic one-dimensional compression and expansion between two parallel flat pistons moving with opposite velocities in the direction of their perpendicular axis. The turbulence model used is the second-order model developed at a low Reynolds number by Craft and Launder. Numerical results show that the turbulent field may be considered as homogeneous in an extended part of the domain. The confinement effect appears mainly in the vicinity of the moving walls while the central region is especially influenced by the compression effect. The evolution of the heat flux, transferred from the fluid through the moving walls, tends to a zero limit cycle in the turbulent flow and to a non-zero limit cycle in the laminar flow. The disappearance of the turbulent energy is not predicted by the k-l model.  相似文献   

19.
A transient lumped heat pipe formulation for conventional heat pipes is presented and the lumped analytical solutions for different boundary conditions at the evaporator and condenser are given. For high temperature heat pipes with a radiative boundary condition at the condenser, a nonlinear ordinary differential equation is solved. In an attempt to reduce computer demands, a transient lumped conductive model has been developed for noncondensible gas-loaded heat pipes. The lumped flat-front transient model was extended by accounting for axial heat conduction across the sharp vapor-gas interface. The analytical solutions for conventional and gas-loaded heat pipes were compared with the corresponding numerical results of the full two-dimensional conservation equations and experimental data, with good agreement.  相似文献   

20.
In this paper we describe a natural family of random non-intersecting discrete paths in the dimer model on the honeycomb lattice. We show that when the dimer model is going to freeze, this family of paths, after a proper rescaling, converges to the extended sine process, obtained traditionally as the limit of the Dyson model when the number of particles goes to infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号