首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
宋一平  苗春贺  单俊芳  王鹏飞  徐松林 《爆炸与冲击》2022,42(7):073103-1-073103-16

结合高速摄影技术,应用SHPB加载装置,分别使用钢制、铝制和有机玻璃制3种透射杆,对直径约7.90、11.80、15.61 mm 3种尺寸的石英玻璃珠进行了低速冲击实验。根据不同透射杆条件下的玻璃珠破碎过程中的载荷-位移曲线,结合有限元软件计算玻璃珠在冲击作用下载荷的变化情况以及实验过程中玻璃珠的应变,探讨了应力调整对玻璃珠破碎过程的影响。结果表明:相同冲击条件作用下,改变透射杆的材料,会改变玻璃珠破碎过程中的载荷分布,即透射端边界波阻抗的改变会导致反射波发生改变,从而导致玻璃珠内部载荷发生变化;透射杆为铝材和有机玻璃材质时,玻璃珠在破碎过程中的载荷明显下降,在加载过程中伴随着垫块的变形,玻璃珠内部的应力调整时间变长;透射杆为钢杆时,玻璃珠的应变主要表现为两端最大,越靠近中间应变越小,对于透射杆为铝杆和有机玻璃杆的玻璃珠,透射端局部出现了卸载行为。采用有机玻璃透射杆之后,局部应力和变形降低的结果使得玻璃珠在经受较大的变形之后发生破碎,表明玻璃珠的破碎行为由局部变形和局部变形梯度共同控制。

  相似文献   

2.
The paper presents quasi-static FE-simulations of the crack formation in a reinforced concrete bar without stirrups subject to tension. The material was modeled with a continuum smeared crack model using an elasto-plastic constitutive law. A linear Rankine criterion with isotropic softening and associated flow rule was adopted in a tensile regime. To ensure the mesh-independency, the softening parameter was enhanced by a characteristic length of micro-structure by means of a non-local theory. Attention was laid to the effect of a different characteristic length of micro-structure and initial bond-slip stiffness on the spacing of localized zones.  相似文献   

3.
While flow across long tube bundles is considered classical data, pin-fin arrays made up of short tubes have become a growing topic of interest for use in cooling gas turbine airfoils. Data from the literature indicate that decreasing streamwise spacing increases heat transfer in pin-fin arrays; however, the specific mechanism that causes increased heat transfer coefficients remains unknown. The present work makes use of time-resolved PIV to quantify the effects of streamwise spacing on the turbulent near wake throughout various pin-fin array spacings. Specifically, proper orthogonal decomposition was used to separate the (quasi-) periodic motion from vortex shedding and the random motion from turbulent eddies. Reynolds number flow conditions of 3.0?×?103 and 2.0?×?104, based on pin-fin diameter and velocity at the minimum flow area, were considered. Streamwise spacing was varied from 3.46 pin diameters to 1.73 pin diameters while the pin-fin height-to-diameter ratio was unity and the spanwise spacing was held constant at two diameters. Results indicated that (quasi-) periodic motions were attenuated at closer streamwise spacings while the level of random motions was not strongly dependent on pin-fin spacing. This trend was observed at both Reynolds number conditions considered. Because closer spacings exhibit higher heat transfer levels, the present results imply that periodic motions may not contribute to heat transfer, although further experimentation is required.  相似文献   

4.
5.
A crack on the interface between a linear elastic medium and a stress-state dependent physically nonlinear medium is studied. A numerical method to solve such problems is proposed. Some asymptotic distributions of stresses, strains, and displacements near the crack tip are obtained under the assumption that the forces and displacements are continuous on the interface.  相似文献   

6.
Experiments were conducted to study flame acceleration in an orifice plate laden detonation tube. Orifice plate area blockage and spacing were varied to determine their affect on flame acceleration. The tube used in the study was 3.05 m long with an inner diameter of 14.0 cm. Experiments were primarily carried out with stoichiometric propane-air, however the affect of mixture reactivity was also investigated by varying the mixture equivalence ratio. The distance required for the flame to achieve a velocity equal to the speed of sound in the unburned gas mixture was measured. This run-up distance is used to characterize the early stage of the flame acceleration process. It was found that in all cases, the flame run-up distance decreased with increased blockage ratio and with increased mixture reactivity. It was found that for higher blockage ratios plates flame acceleration was greatest for a plate spacing of one tube diameter, but for lower blockage ratio plates the results obtained for one-half, one, and one and one-half tube diameter plate spacing were very similar. The most rapid flame acceleration was observed when the ratio of the orifice plate spacing and the orifice plate height (half of the difference between the tube and orifice plate diameter) is on the order of 5. It is proposed that this optimum acceleration corresponds to the condition where the plate spacing is roughly equal to the length of the unburned gas re-circulation zone downstream from the orifice plate. PACS 47.40.-x; 47.70.Fw This paper was based on work that was presented at the 19th Interna-tional Colloquium on the Dynamics of Explosions and Reactive Sys-tems, Hakone, Japan, July 27 - August 1, 2003  相似文献   

7.
This study investigates the overall and local response of porous media composed of a perfectly plastic matrix weakened by stress-free voids. Attention is focused on the specific role played by porosity fluctuations inside a representative volume element. To this end, numerical simulations using the Fast Fourier Transform (FFT) are performed on different classes of microstructure corresponding to different spatial distributions of voids. Three types of microstructures are investigated: random microstructures with no void clustering, microstructures with a connected cluster of voids and microstructures with disconnected void clusters. These numerical simulations show that the porosity fluctuations can have a strong effect on the overall yield surface of porous materials. Random microstructures without clusters and microstructures with a connected cluster are the hardest and the softest configurations, respectively, whereas microstructures with disconnected clusters lead to intermediate responses. At a more local scale, the salient feature of the fields is the tendency for the strain fields to concentrate in specific bands. Finally, an image analysis tool is proposed for the statistical characterization of the porosity distribution. It relies on the distribution of the ‘distance function’, the width of which increases when clusters are present. An additional connectedness analysis allows us to discriminate between clustered microstructures.  相似文献   

8.
The rate of heat transfer from a plate due to impinging of an array of jets was investigated. The effect of jet-to-plate spacing in a confined array of impinging laminar square jets was investigated numerically through the solution of Navier Stokes and energy equations. The simulation is carried out for the jet-to-plate spacing between 2 B and 20 B and for jet-to-jet spacing of 4 B, where B is the jet width. Five in-line jets subjected to across-flow were used in this investigation. Also, six different ratios of jet to cross-flow velocity are simulated (0.5, 1.0, 2.5, 5, 7.5 and 10) for the jet Reynolds number of 200. The predicted results show a formation of one or two ground horseshoe vortices between the jets. In addition, a horseshoe vortex forms at different position between the orifice and impinging plates due to the interaction of two jets before they combine. The number of the ground horseshoe vortex and its size are strongly affected by the jet-to-plate spacing and by jet to cross-flow velocity ratio. The effect of jet-to-plate spacing and jet to cross-flow velocity ratio on heat transfer is presented and discussed.  相似文献   

9.
热循环加载条件下空洞对EBGA焊点可靠性的影响   总被引:3,自引:0,他引:3  
空洞是球栅阵列(BGA:Ball Grid Array)器件在装配过程中形成的主要缺陷之一,本文以增强性BGA(EBGA:Enhanced BGA)为研究对象,采用统一型粘塑性Anand本构方程描述Sn63Pb37的粘塑性力学行为,应用非线性有限元的方法分析了不同位置和大小的空洞对焊点疲劳寿命的影响,为制定装配后的BGA焊点接收标准提供理论参考。  相似文献   

10.
This study was conducted to investigate the effect of circumferential angle, lug spacing and wheel slip on forces produced by a cage wheel. Experiments were conducted in a laboratory soil bin having Bangkok Clay soil with 51% (d.b.) soil moisture content. Six ring-type loadcells were used to measure the soil horizontal, vertical and transverse reactions on the cage wheel lugs. The circumferential angle was varied from 0, 15, 30 to 45°. The lug spacing and wheel slip were varied from 20, 30 to 40° and 20, 35 to 50% respectively. All the force measurements were done at a constant 7 cm sinkage. The results showed that increasing circumferntial angle up to 45° can reduce variation in lug wheel forces, at the same time it had little effect on the mean pull and lift values. The side force was affected by the changes of circumferential angle. The 20° lug spacing not only gave the minimum variations but also maximum mean lug forces. The highest lug wheel forces occurred at 35% wheel slip.  相似文献   

11.
We study thermomechanical deformations of a viscoplastic body deformed in simple shear. The effect of material elasticity is neglected but that of work hardening, strain-rate hardening, thermal softening, and strain-rate gradients is considered. The consideration of strain-rate gradients introduces a material characteristic length into the problem. A homogeneous solution of the governing equations is perturbed at different values t0 of time t, and the growth rate at time t0 of perturbations of different wavelengths is computed. Following Wright and Ockendon's postulate that the wavelength of the dominant instability mode with the maximum growth rate at time t0 determines the minimum spacing between shear bands, the shear band spacing is computed. It is found that for the shear band spacing to be positive, either the thermal conductivity or the material characteristic length must be positive. Approximate analytical expressions for locally adiabatic deformations of dipolar (strain-rate gradient-dependent) materials indicate that the shear band spacing is proportional to the square-root of the material charateristic length, and the fourth root of the strain-rate hardening exponent. The shear band spacing increases with an increase in the strain hardening exponent and the thermal conductivity of the material.  相似文献   

12.
Superelastic fine-grained Nickel–Titanium (NiTi) polycrystalline shape memory alloys under tensile loading deform collectively via the nucleation and growth of macroscopic martensite domains. Recent experiments on a stretched NiTi strip showed that the number of nucleated domains (or the domain spacing) increased (decreased) with increasing applied stretching rate. It is also shown that the rate dependence of the domain formation is due to the coupling between the transfer of the locally released heat and the temperature dependence of the transformation stress. In this paper, a simple one-dimensional model is developed to quantify this effect of thermo-mechanical coupling on the observed domain spacing. Analytical relationship between the domain number, thermo-mechanical properties of the material, heat transfer boundary conditions and the externally applied strain rate is established. It is found that for the case of strong heat convection the domain spacing is inversely proportional to the applied stretching rate, while for the case of weak convection, the domain spacing is dictated by a power-law scaling with exponent ?0.5. The latter theoretical prediction agrees well quantitatively with the experimental data in stagnant air.  相似文献   

13.
This work examines the effects of manufacturing induced voids on the postbuckling behavior of delaminated unidirectional composites. In the finite element model developed, a through-width delamination is introduced close to one surface of a flat panel, and a void is placed in the delamination plane ahead of each delamination front. The panel is subjected to compression in the fiber direction. The postbuckling delamination growth is studied by calculating the strain energy release rate (SERR) using the virtual crack closure technique. Local stress analyses of the region near the delamination front are also performed to further investigate the void effects. It is found that although the presence of void does not significantly alter the postbuckling transverse displacement of the delaminated panel, the induced stress perturbation by the void affects the SERR. The Mode II SERR as well as the total SERR increase depending on the size of the void and its distance from the delamination front. Since the Mode I SERR shows non-monotonic behavior with the applied load, the effects of voids are studied on its maximum value.  相似文献   

14.
S. S. Singh 《Meccanica》2013,48(3):617-630
The problem of reflection and refraction of elastic waves for an incident transverse wave at a plane interface between two dissimilar half-spaces of thermo-elastic materials with voids has been investigated. Using the theory developed by Iesan (Acta Mech 60:67–89, 1986), the formulae corresponding to the amplitude and energy ratios of reflected and refracted elastic waves have been obtained. The results similar to Singh and Tomar (Mech Materials 39:932–940, 2007) are recovered from the present analysis. The amplitude and energy ratios are computed numerically for a particular model.  相似文献   

15.
The residual stress effect due to cold-working is studied in relation to fatigue striation spacing. Cold-working introduces a compressive stress field around the hole reducing the tendency for fatigue cracks to initiate and grow under cyclic mechanical loading. It is known that fatigue lifetime assessment requires a detailed knowledge of the residual stress profile. X-ray diffraction and 3D finite element analysis (FEA) can be used to determine the residual stress profile. Scanning electron microscopy (SEM) measurements were performed for measuring the striation spacing.  相似文献   

16.
In this paper, based on three-dimensional linear generalized thermoelasticity, an exact analysis of free vibration of a simply supported homogeneous isotropic, thermally conducting, cylindrical panel with voids initially at uniform temperature and undeformed state has been presented. Three displacement potential functions are introduced for solving the equations of motion, heat conduction and volume fraction field. The purely transverse wave gets decoupled from rest of motion and is not affected by thermal and volume fraction (voids) fields. After expanding the displacement potentials, volume fraction and temperature functions with orthogonal series, the equations of the considered vibration problem are reduced to five-second order coupled ordinary differential equations whose formal solution can be expressed by using Bessel functions with complex arguments. The corresponding results for thermoelastic panel without voids, elastic panel with and without voids have been deduced as special cases from the present analysis. In order to illustrate the analytical results, the numerical solutions of various relations and equations have been obtained to compute the lowest frequency as function of different cylindrical panel parameters. The computer simulated results have been presented graphically.  相似文献   

17.
This study is devoted to the mechanical behaviour of polycrystalline materials with two populations of voids, small spherical voids located inside the grains and larger spheroidal voids located at the grain boundaries. In part I of the work, instantaneous effective stress–strain relations were derived for fixed microstructure. In this second part, the evolution of the microstructure is addressed. Differential equations governing the evolution of the microstructural parameters in terms of the applied loading are derived and their integration in time is discussed. Void growth results in a global softening of the stress–strain response of the material. A simple model for the prediction of void coalescence is proposed which can serve to predict the overall ductility of polycrystalline porous materials under the combined action of thermal dilatation and internal pressure in the voids.  相似文献   

18.
An analytical approach to calculate the stress of an arbitrary located penny-shaped crack interacting with inclusions and voids is presented. First, the interaction between a penny-shaped crack and two spherical inclusions is analyzed by considering the three-dimensional problem of an infinite solid, composed of an elastic matrix, a penny-shaped crack and two spherical inclusions, under tension. Based on Eshelby’s equivalent inclusion method, superposition theory of elasticity and an approximation according to the Saint–Venant principle, the interaction between the crack and the inclusions is systematically analyzed. The stress intensity factor for the crack is evaluated to investigate the effect of the existence of inclusions and the crack–inclusions interaction on the crack propagation. To validate the current framework, the present predictions are compared with a noninteracting solution, an interacting solution for one spherical inclusion, and other theoretical approximations. Finally, the proposed analytical approach is extended to study the interaction of a crack with two voids and the interaction of a crack with an inclusion and a void.  相似文献   

19.
In this note we prove the impossibility of the localization in time of the solutions of the linear thermoelasticity with voids. This means that the only solution for this problem that vanishes after a finite time is the null solution. From a thermomechanical point of view, this result says that the combination of the thermal and porous dissipation in the linear theory is not sufficiently strong to guarantee that the thermomechanical deformations will vanish after a finite time. The main idea to prove this result is to show the uniqueness of solutions for the backward in time problem.  相似文献   

20.
A nonlocal elastic–plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号