首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 °C and a weaker and narrower peak around 360 °C were found in a sample annealed at 600 °C for 1 h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 °C. The reflectivity measurements showed several bands in the NIR region due to H2O, OH and Al–OH complexes. No band was observed in the visible region. The thermal treatments were carried out from ∼110 to 940 °C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu2+ signals at g = 2.4 and g = 2.1 plus E1′ signal superposed to Fe3+ signal around g = 2.0.  相似文献   

2.
110 °C thermoluminescence (TL) peak in quartz is well known due to its pre-dose effect, which is used in dating technique. The generally accepted mechanism for the production of this peak is based on Ge impurity contained in quartz. Its role is to substitute for Si in SiO4 tetrahedron and under irradiation gives rise to [GeO4/e?]? electron centre. Heating for TL read out liberates electron that recombines with hole in [AlO4/h]° or [H3O4/h]° centres emitting photon. The investigation, carried out on blue quartz, green quartz, black quartz, pink quartz, red quartz, sulphurous quartz, milky quartz, alpha quartz and synthetic quartz, has shown that the 110 °C TL peak in all these varieties of quartz has no correlation with the respective Ge content. Electron paramagnetic resonance (EPR) measurements on any of these varieties of quartz revealed a signal with g1=2.0004, g2=1.9986 and g3=1.974 and this signal does not appear to correspond to any known EPR signals in alpha quartz. Furthermore, isothermal decay measurements are carried out on the above mentioned EPR signal and 110 °C TL peak in alpha, blue and green quartz. A close correlation has been observed in the decay behavior. A new mechanism is proposed based on an interstitial O? centre.  相似文献   

3.
The LM–OSL signal of quartz, while measured at room temperature, is dominated by an intermediate, broad and intense OSL component, so that its contribution and general characteristics are derived very accurately. Through a series of dose–response, bleaching and thermal decay at room temperature experiments, in conjunction with curve fitting studies, a component resolved analysis is carried out studying the correlation between this specific component, termed as LM–OSL component C2 and the 110 °C TL glow peak in quartz. The dose–response of these two luminescence components behaves exactly similar being linear at low doses and saturating at almost 100 Gy. Both signals decay exponentially under illumination, providing identical optical detrapping cross-section values. Residual of both luminescence signals after thermal decay at room temperature follows an exponential law, yielding similar mean half-lives. All previous luminescence features provide strong evidence for the electron trap being the same for both the 110 °C TL trap and the LM–OSL component C2. The results of the present work are very promising and clearly support the possibility of extrapolating the TL pre-dose methodology to the OSL pre-dose effect using only the LM–OSL component C2.  相似文献   

4.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

5.
Borate based thermoluminescence dosimeters (TLD) show high sensitivity and good TL characteristics. One of the promising material amongst the dosimeters is Dy doped CaB4O7. Spectrally resolved thermoluminescence of Dy doped CaB4O7 shows three glow peaks at about 50 °C, 240 °C and 380 °C, the intensity of the 240 °C glow peak being the maximum. All TL experiments were conducted on a high sensitivity TL spectrometer at Sussex University with a heating rate of 50 °C min?1. Two main emissions associated with the Dy dopant are observed at ~480 and 580 nm. The samples were subjected to a series of treatments including excitation by X-rays and UV laser radiation. As part of the present research CaB4O7:Dy materials were subjected to two different heat treatments; quenching and slow cooling in order to investigate the changes in TL characteristics.  相似文献   

6.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

7.
The effect of X-ray irradiation and thermal treatments on the radio-luminescence emission spectrum of both a natural pegmatitic quartz and a synthetic one was investigated. All the emission spectra could be deconvolved into the same set of five Gaussian components. Among the identified RL bands, a blue emission at 2.53 eV (480 nm) is enhanced under X-ray irradiation. A strong correlation with the sensitization of the so called “110 °C” TSL peak (in our measurements seen at lower temperature due to the lower heating rate) was proved, suggesting that the recombination centers associated with the 2.53 eV band are produced under X-ray irradiation and are involved in both RL and TSL luminescence mechanisms. When each irradiation was followed by heating up to 500 °C a strong sensitization of the RL band emitting at 3.44 eV and of the 110 °C TSL peak were observed. A perfect correlation between the RL and TSL emissions suggests that the recombination centers involved in the RL and TSL emissions are the same.  相似文献   

8.
《Radiation measurements》2009,44(3):232-238
A flow-through Geiger-Müller pancake electron detector attachment has been fitted to a standard Risø TL/OSL reader enabling optically stimulated electrons (OSE) to be measured simultaneously with optically stimulated luminescence (OSL). Using this detector, OSE and OSL measurements from natural quartz samples are studied to examine the possible use of OSE as a chronometer. First the relative variability in OSE and OSL growth curve shapes and the effect of preheat on these are presented, and from these curves, conclusions are drawn concerning the charge movement in natural quartz. Secondly, a dose recovery test shows that OSE can successfully recover a laboratory dose of 300 Gy given before any laboratory thermal treatment, for preheating temperatures between 160 and 260 °C. Furthermore, for the first time natural OSE decay curves are detected and these signals are used to estimate a burial dose using the single-aliquot regenerative-dose (SAR) procedure. Finally, a comparative study of the equivalent doses estimated using both OSE and OSL from 10 quartz samples are presented, and it is shown that OSE has a significant potential in retrospective dosimetry.  相似文献   

9.
Thermoluminescence (TL) characteristics of recently developed high sensitive mixed halosulphate phosphors, NaMgSO4Cl: Cu and NaMgSO4Cl: Ce were studied in comparison with CaSO4: Dy in order to assess the possibility of their use in personal monitoring and TLD phosphors at very low dose of 5 Gy. It was found that NaMgSO4Cl: Cu is 5.59 times and NaMgSO4Cl: Ce is 6.18 times more sensitive as compared to standard CaSO4: Dy. UV photo-excited luminescence from Cu to Ce doped NaMgSO4Cl halosulphate phosphors has been investigated. The intense emission of the spectrum is assigned to electronic transitions 3d94s1→3d10 in monovalent copper ion and 5d→4f in Ce3+ ions. Increase in PL peak intensity suggesting that Cu and Ce play an important role in PL emission in the present matrix. These phosphors were synthesized by the wet chemical method. XRD, photoluminescence (PL) and thermoluminescence (TL) characterization of phosphors has been reported in this paper. The preparation of an inexpensive and high sensitive NaMgSO4Cl: Cu and NaMgSO4Cl: Ce with TL glow peaks for different concentrations are observed between 160 and 195 °C and between 200 and 225 °C, respectively, exposed to gamma-rays of 60Co for their thermoluminescence (TL) properties. The glow curves have been recorded at a heating rate of 2 K s?1 and irradiated at a dose rate of 0.995 kGy h?1 for 5 Gy. In present study the trapping parameters such as order of kinetics (b), activation energy (E) and frequency factors (s) have been calculated for the 195 and 200 °C glow peaks of NaMgSO4Cl: Cu and NaMgSO4Cl: Ce, respectively by using Chen's method. The paper discusses the luminescence of Cu+ and Ce3+ by simple method of incorporation in NaMgSO4Cl host.  相似文献   

10.
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W–H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 °C for 1–4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 °C. However, in TL of ODH used samples, a single glow peak at 376 °C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 °C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed.  相似文献   

11.
The aim of this paper is to evaluate the thermoluminescent (TL) response of a larimar, a variety of pectolite (NaCa2Si3O8[OH]). It is a blue pectolite only found on the terrestrial crust of the province of Barahona, in the south-western region of the Dominican Republic. The larimar rock used in this study, presented a light-blue color with brown areas. X-ray powder diffractometry (XRD), showed that the light-blue portion of the rock is composed essentially by pectolite and the brown portion is composed by a mixture of minerals. Aliquots of 5 mg of light-blue portions were irradiated with gamma rays with doses from 10 to 104 Gy and the TL glow curves were obtained from 50 to 400 °C. The glow curve showed a broad peak around 150 °C and a peak near 280 °C. Different pre-heat condition were used to remove the broad peak. The TL emission of the main peak appeared in the region of 580 nm. The TL response of the main peak showed a linear behavior up to 2500 Gy and a sub-linear behavior above this dose value. Studies of the 30 day fading effects in TL signal using a pre-heating temperature around 180 °C during 15 min were carried out and fading near 25% was observed.  相似文献   

12.
Polycrystalline Na3SO4F:Eu and NaMgSO4F:Eu halosulphate phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. Two well resolved peaks are observed at 593 nm and 614 nm, which are assigned to due to 5D07F1 and 5D07F2 transitions of Eu3+ ions. TL is observed at temperatures between 100 °C and 300 °C. In this paper, we report PL emission spectra of Eu3+ and TL glow curves, which are more sensitive than the standard TLD-CaSO4:Dy. The presented phosphors are applicable for the mercury free lamps and solid state lighting devices.  相似文献   

13.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

14.
Bi4(GeO4)3 glass materials have been characterized by X-ray excited luminescence, photoluminescence and cathodo-luminescence measurements. The materials were obtained by crystallization at different temperatures and their spectroscopic parameters were compared before and after crystallization. Thermoluminescence curves recorded after electron irradiation of BGO glass behave similarly to BGO crystals, showing several peaks between 408 K (135 °C) and 610 K (337 °C). The differences between the Bi4(GeO4)3 crystals and glass materials are believed to result from the random distribution of GeO4 tetrahedra around Bi3+ ions which influences the photoluminescence and TL parameters. The CL images of glass-ceramic samples obtained by partial crystallization at 600 °C show luminescent crystalline structures, which are probably responsible for the increase in scintillation efficiency.  相似文献   

15.
Tb3+ doped CaZrO3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO3:Tb3+ exhibits three thermoluminescence (TL) glow peaks at 126 °C, 200 °C and 480 °C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O? ion. Centre II with an axial symmetric g-tensor with principal values g=1.9986 and g?=2.0023 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F+ centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F+ centre appear to correlate with the observed high temperature TL peak in CaZrO3:Tb3+ phosphor.  相似文献   

16.
Quartz extracted from heated bricks has been previously suggested for use in dose estimation in accident dosimetry, but this technique has never been applied before to Japanese quartz which often has unusual OSL characteristics. In this study the optically stimulated luminescence (OSL) characteristics of quartz extracted from a Japanese commercial red brick produced by Mishima – Renga – Seizoujyo Co. are studied. These companies are based in the Aichi Prefecture (capital Nagoya), which accounts for about half of the red brick production in Japan. A comparison of TL (thermoluminescence) and OSL signals has been carried out towards identification of common source traps. It is observed that OSL from Japanese brick quartz shows unusual luminescence characteristics; in particular, the initial fast decaying OSL signal contains a dominant (>90%) thermally unstable component related to the 85 °C TL peak, which necessitates a prior heat treatment. A single-aliquot regenerative-dose (SAR) protocol is developed and tested using thermal treatments intended to isolate a stable dosimetric signal. A minimum detection limit of ~65 mGy is then estimated using this protocol. Following irradiation using 60Co and 137Cs, dose–depth profiles were measured on two different commercial brick types (Mishima – Renga – Seizoujyo Co. and Hase – Renga Co.) with 5 Gy and 10 Gy surface doses. The profiles derived from the two sources were readily distinguishable. It is concluded that the OSL signals from the two types of Japanese brick quartz examined here can be used to derive precise estimates of accident dose, and, possibly to distinguish between sources of gamma radiation in a nuclear accident.To our knowledge, this is the first report on the existence of an unstable fast decaying OSL signal in quartz derived from bricks, and demonstrates a way forward with such samples in retrospective dosimetry.  相似文献   

17.
The feasibility of utilizing the pre-dosed OSL signal in the estimation of the equivalent dose has been investigated. The results based on (i) the behavior of growth curve, (ii) dose recovery tests and (iii) non-bleachability of reservoir centres, R-centres, suggests that (i) the pre-dosed OSL does not seem to work satisfactorily in dose estimation unlike the pre-dosed 110 °C TL emission and (ii) it may not be applicable in case of bleached specimen.  相似文献   

18.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

19.
The present work suggests an alternative experimental method in order to not only measure the signal of the deep traps in Al2O3:C without heating the sample to temperatures greater than 500 °C, but also use this signal for high dose level dosimetry purposes as well. This method consists of photo transfer OSL measurements performed at elevated temperatures using the blue LEDs (470 nm, FWHM 20 nm) housed at commercial Risø TL/OSL systems, after the sample was previously heated up to 500 °C in order to empty its main TL dosimetric trap. The influence of this procedure on specific features such as glow curve shape and sensitivity of the main TL glow peak was also studied.  相似文献   

20.
Terbium activated Al2O3 phosphors were synthesized by combustion technique using hydrazine as a reductive non-carbonaceous fuel. X-ray diffraction (XRD) patterns of the samples were recorded to confirm the formation of the sample. Scanning electron microscope (SEM) images were taken to study the surface morphology of the sample. The photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties of the γ-ray irradiated samples were studied. ML was excited impulsively by dropping a piston on the sample. In ML glow curves one peak with a shoulder was observed. ML intensity increases with activator concentration. Optimum ML was observed for the sample having 0.5 mol% of Tb ions. In the TL glow curve two distinct peaks, one around 222 °C and another around 280 °C, were observed for the samples having 0.5 mol% of activator concentration. In the PL spectra the 5D47F5 line at 544 nm in the green region is observed, which is the strongest in Al2O3 system. It is suggested that de-trapping of trapped charge carriers followed by recombination is responsible for ML and TL in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号