首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational aeroacoustic (CAA) simulation requires accurate schemes to capture the dynamics of acoustic fluctuations, which are weak compared with aerodynamic ones. In this paper, two kinds of schemes are studied and compared: the classical approach based on high order schemes for Navier–Stokes-like equations and the lattice Boltzmann method. The reference macroscopic equations are the 3D isothermal and compressible Navier–Stokes equations. A Von Neumann analysis of these linearized equations is carried out to obtain exact plane wave solutions. Three physical modes are recovered and the corresponding theoretical dispersion relations are obtained. Then the same analysis is made on the space and time discretization of the Navier–Stokes equations with the classical high order schemes to quantify the influence of both space and time discretization on the exact solutions. Different orders of discretization are considered, with and without a uniform mean flow. Three different lattice Boltzmann models are then presented and studied with the Von Neumann analysis. The theoretical dispersion relations of these models are obtained and the error terms of the model are identified and studied. It is shown that the dispersion error in the lattice Boltzmann models is only due to the space and time discretization and that the continuous discrete velocity Boltzmann equation yield the same exact dispersion as the Navier–Stokes equations. Finally, dispersion and dissipation errors of the different kind of schemes are quantitatively compared. It is found that the lattice Boltzmann method is less dissipative than high order schemes and less dispersive than a second order scheme in space with a 3-step Runge–Kutta scheme in time. The number of floating point operations at a given error level associated with these two kinds of schemes are then compared.  相似文献   

2.
When continuous systems are discretized, their solutions depend on the time step chosen a priori. Such solutions are not necessarily spurious in the sense that they can still correspond to a solution of the differential equations but with a displacement in the parameter space. Consequently, it is of great interest to obtain discrete equations which are robust even when the discretization time step is large. In this paper, different discretizations of the Lorenz system are discussed versus the values of the discretization time step. It is shown that the sets of difference equations proposed are more robust versus increases of the time step than conventional discretizations built with standard schemes such as the forward Euler, backward Euler, or centered finite difference schemes. The nonstandard schemes used here are Mickens' scheme and Monaco and Normand-Cyrot's scheme.  相似文献   

3.
4.
为了解决复杂形状横截面的电磁波导问题,根据电磁波导的Hamilton体系,在辛几何形式下采用有限元半解析横向离散的方法对电磁波导进行求解.该方法可应用于任意各向异性材料,且便于处理不同介质的界面条件,求解用解析方法难以求解的复杂问题.利用棱单元进行有限元离散,给出矩形波导、T隔膜矩形波导、分层波导等多种波导的具体算例,其数值结果逼近于真实解,且伪解消除,表明该方法有效.  相似文献   

5.
High accuracy solution of PDEs requires proper error analysis. Previous analysis for a non-dispersive system [T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis, J. Comput. Phys. 226 (2007) 1211–1218] identified sources of error correctly. Here, the aim is to extend the spectral analysis for the model linearized rotating shallow water equations (LRSWE), as an example of dispersive system. We perform the analysis when high accuracy compact schemes are used to solve the LRSWE relevant to geophysical fluid dynamics, using different grid arrangements proposed in Mesinger and Arakawa [F. Mesinger, A. Arakawa, Numerical Methods Used in Atmospheric Models, GARP Publ. Ser. No. 17, vol. 1, WMO, Geneva, 1976, pp. 43–64] and Randall [D.A. Randall, Geostrophic adjustment and the finite-difference shallow-water equations, Mon. Wea. Rev. 122 (1994) 1371–1377]. Compact schemes are used for fluid dynamical problem, as these afford near-spectral accuracy in solving non-periodic problems. However, higher accuracy methods also suffer from errors, those are often filtered by low order methods. For example, dispersion error is present in all numerical methods and extreme form of it leads to q-waves, which appear at higher wavenumbers for compact schemes as compared to lower order method. We also evaluate a compact scheme specifically designed for use with staggered grids. Here, two and four time-level temporal discretization methods have been compared for solving LRSWE by considering classical fourth-order, four-stage Runge–Kutta (RK4), two time-level forward–backward (FB) and four time-level generalized FB temporal integration schemes.  相似文献   

6.
This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.  相似文献   

7.
8.
A new family of cell-centered finite-volume schemes is presented for solving the general full-tensor pressure equation of subsurface flow in porous media on arbitary unstructured triangulations. The new schemes are flux continuous and have full pressure support (FPS) over each subcell with continuous pressure imposed across each control-volume sub-interface, in contrast to earlier formulations. The earlier methods are point-wise continuous in pressure and flux with triangle-pressure-support (TPS) which leads to a more limited quadrature range. An M-matrix analysis identifies bounding limits for the schemes to posses a local discrete maximum principle. Conditions for the schemes to be positive definite are also derived.A range of computational examples are presented for unstructured triangular grids, including highly irregular grids, and the new FPS schemes are compared against the earlier pointwise continuous TPS formulations. The earlier pointwise TPS methods can induce strong spurious oscillations for problems involving strong full-tensor anisotropy where the M-matrix conditions are violated, and can lead to decoupled solutions in such cases. Unstructured cell-centered decoupling is investigated. In contrast to TPS, the new FPS formulation leads to well resolved solutions that are essentially free of spurious oscillations.A substantial degree of improved convergence behavior, for both pressure and velocity, is also observed in all convergence tests. This is particularly important for problems involving high anisotropy ratios. Also the new formulation proves to be highly beneficial for an upscaling example, where enhancement of convergence is highly significant for certain quadrature points, clearly demonstrating further advantages of the new formulation.  相似文献   

9.
We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.  相似文献   

10.
针对波动方程求解,在Hamilton体系下建立了对空间离散的准粒子体系,该准粒子体系实现简单,物理意义明确;在时间离散方面,构造了一种适合高效声波模拟的修正辛格式,该格式是在常规的二阶Partitioned Runge-Kutta(PRK)基础之上构造而成,其具有三阶时间精度,从理论上分析了修正辛格式的数值稳定性和频散性能.数值结果表明,本文提出的方法在计算时间,计算精度和计算存储量等各方面性能都有相应改善。  相似文献   

11.
This paper examines high-order unstaggered symmetric and upwind finite-volume discretizations of the advection equation in the presence of an abrupt discontinuity in grid resolution. An approach for characterizing the initial amplitude of a parasitic mode as well as its decay rate away from a grid resolution discontinuity is presented. Using a combination of numerical analysis and empirical studies it is shown that spurious parasitic modes, which are artificially generated by the resolution discontinuity, are mostly undamped by symmetric finite-volume schemes but are quickly removed by upwind and semi-Lagrangian integrated mass (SLIM) schemes. Slope/curvature limiting is insufficient to completely remove these modes, especially at low forcing frequencies where the incident wave can act as a carrier of the parasitic mode. Increasing the order of accuracy of the reconstruction at the grid interface is effective at removing noise from the lowest-frequency incident modes, but insufficient at high frequencies. It is shown that this analysis can be extended to the 1D linear shallow-water equations via Riemann invariants.  相似文献   

12.
A new compact scheme is presented for computing wave propagation problems and Navier–Stokes equation. A combined compact difference scheme is developed for non-periodic problems (called NCCD henceforth) that simultaneously evaluates first and second derivatives, improving an existing combined compact difference (CCD) scheme. Following the methodologies in Sengupta et al. [T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy schemes for DNS and acoustics, J. Sci. Comput. 26 (2) (2006) 151–193], stability and dispersion relation preservation (DRP) property analysis is performed here for general CCD schemes for the first time, emphasizing their utility in uni- and bi-directional wave propagation problems – that is relevant to acoustic wave propagation problems. We highlight: (a) specific points in parameter space those give rise to least phase and dispersion errors for non-periodic wave problems; (b) the solution error of CCD/NCCD schemes in solving Stommel Ocean model (an elliptic p.d.e.) and (c) the effectiveness of the NCCD scheme in solving Navier–Stokes equation for the benchmark lid-driven cavity problem at high Reynolds numbers, showing that the present method is capable of providing very accurate solution using far fewer points as compared to existing solutions in the literature.  相似文献   

13.
In this paper an unconditionally stable, spatially and temporally implicit time-domain discretization for nonuniform magnetized cold plasma is developed. The discrete dispersion relation is free of spurious solutions and approximates the continuous dispersion relation for well-resolved wavelengths and frequencies (kΔ ? π, ωΔt ? π). For a specific choice of parameters, the discrete dispersion relation approximates the continuous dispersion relation for all wavelengths and frequencies up to the Nyquist limit. A few examples, amongst them one involving mode conversion, illustrate the new method.  相似文献   

14.
With many superior features, Runge–Kutta discontinuous Galerkin method (RKDG), which adopts Discontinuous Galerkin method (DG) for space discretization and Runge–Kutta method (RK) for time integration, has been an attractive alternative to the finite difference based high-order Computational Aeroacoustics (CAA) approaches. However, when it comes to complex physical problems, especially the ones involving irregular geometries, the time step size of an explicit RK scheme is limited by the smallest grid size in the computational domain, demanding a high computational cost for obtaining time accurate numerical solutions in CAA. For computational efficiency, high-order RK method with nonuniform time step sizes on nonuniform meshes is developed in this paper. In order to ensure correct communication of solutions on the interfaces of grids with different time step sizes, the values at intermediate-stages of the Runge–Kutta time integration on the elements neighboring such interfaces are coupled with minimal dissipation and dispersion errors. Based upon the general form of an explicit p-stage RK scheme, a linear coupling procedure is proposed, with details on the coefficient matrices and execution steps at common time-levels and intermediate time-levels. Applications of the coupling procedures to Runge–Kutta schemes frequently used in simulation of fluid flow and acoustics are given, including the third-order TVD scheme, and low-storage low dissipation and low dispersion (LDDRK) schemes. In addition, an analysis on the stability of coupling procedures on a nonuniform grid is carried out. For validation, numerical experiments on one-dimensional and two-dimensional problems are presented to illustrate the stability and accuracy of proposed nonuniform time-step RKDG scheme, as well as the computational benefits it brings. Application to a one-dimensional nonlinear problem is also investigated.  相似文献   

15.
We apply the Trapezoidal/BDF2 (TR/BDF2) temporal discretization scheme to nonlinear grey radiative diffusion. This is a scheme that is not well-known within the radiation transport community, but we show that it offers many desirable characteristics relative to other second-order schemes. Several nonlinear variants of the TR/BDF2 scheme are defined and computationally compared with the Crank–Nicholson scheme. It is found for our test problems that the most accurate TR/BDF2 schemes are those that are fully iterated to nonlinear convergence, but the most efficient TR/BDF2 scheme is one based upon a single Newton iteration. It is also shown that neglecting the contributions to the Jacobian matrix from the cross-sections, which is often done due to a lack of smooth interpolations for tabular cross-section data, has a significant impact upon efficiency.  相似文献   

16.
Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.  相似文献   

17.
S. Yu. Dobrokhotov, B. Tirozzi, S. Ya. Sekerzh-Zenkovich, A. I. Shafarevich, and their co-authors suggested new effective asymptotic formulas for solving a Cauchy problem with localized initial data for multidimensional linear hyperbolic equations with variable coefficients and, in particular, for a linearized system of shallow-water equations over an uneven bottom in their cycle of papers. The solutions are localized in a neighborhood of fronts on which focal points and self-intersection points (singular points) occur in the course of time, due to the variability of the coefficients. In the present paper, a numerical realization of asymptotic formulas in a neighborhood of singular points of fronts is presented in the case of the system of shallow-water equations, gluing problems for these formulas together with formulas for regular domains are discussed, and also a comparison of asymptotic solutions with solutions obtained by immediate numerical computations is carried out.  相似文献   

18.
This paper focuses on flux-continuous pressure equation approximation for strongly anisotropic media. Previous work on families of flux-continuous schemes for solving the general geometry–permeability tensor pressure equation has focused on single-parameter families. These schemes have been shown to remove the O(1) errors introduced by standard two-point flux reservoir simulation schemes when applied to full-tensor flow approximation. Improved convergence of the schemes has also been established for specific quadrature points. However these schemes have conditional M-matrices depending on the strength of the off-diagonal tensor coefficients. When applied to cases involving full-tensors arising from strongly anisotropic media, the point-wise continuous schemes can fail to satisfy the maximum principle and induce severe spurious oscillations in the numerical pressure solution.New double-family flux-continuous locally conservative schemes are presented for the general geometry–permeability tensor pressure equation. The new double-family formulation is shown to expand on the current single-parameter range of existing conditional M-matrix schemes. The conditional M-matrix bounds on a double-family formulation are identified for both quadrilateral and triangle cell grids. A quasi-positive QM-matrix analysis is presented that classifies the behaviour of the new schemes with respect to double-family quadrature in regions beyond the M-matrix bounds. The extension to double-family quadrature is shown to be beneficial, resulting in novel optimal anisotropic quadrature schemes. The new methods are applied to strongly anisotropic full-tensor field problems and yield results with sharp resolution, with only minor or practically zero spurious oscillations.  相似文献   

19.
This paper presents a third-order and fourth-order finite-volume method for solving the shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid is built upon an inflated cube placed inside a sphere and provides an almost uniform grid point distribution. The numerical schemes are based on a high-order variant of the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer. In each cell the reconstructed left and right states are either obtained via a dimension-split piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states then serve as input to an approximate Riemann solver that determines the numerical fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple quadrature points renders the resulting flux high-order. Three types of approximate Riemann solvers are compared, including the widely used solver of Rusanov, the solver of Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number flows. Spatial discretizations are paired with either a third-order or fourth-order total-variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial discretization. The numerical schemes are evaluated with several standard shallow-water test cases that emphasize accuracy and conservation properties. These tests show that the AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief discussion on extending the method to arbitrary order-of-accuracy is included.  相似文献   

20.
In this paper, we present a new type of semi-Lagrangian scheme for advection transportation equation. The interpolation function is based on a cubic polynomial and is constructed under the constraints of conservation of cell-integrated average and the slope modification. The cell-integrated average is defined via the spatial integration of the interpolation function over a single grid cell and is advanced using a flux form. Nonoscillatory interpolation is constructed by choosing proper approximation to the cell-center values of the first derivative of the interpolation function, which appears to be a free parameter in the present formulation. The resulting scheme is exactly conservative regarding the cell average of the advected quantity and does not produce any spurious oscillation. Oscillationless solutions to linear transportation problems were obtained. Incorporated with an entropy-enforcing numerical flux, the presented schemes can accurately compute shocks and sonic rarefaction waves when applied to nonlinear problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号