首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper deals with entire solutions of periodic lattice dynamical systems. Unlike homogeneous problems, the periodic equation studied here lacks symmetry between increasing and decreasing pulsating traveling fronts, which affects the construction of entire solutions. In the bistable case, the existence, uniqueness and Liapunov stability of entire solutions are proved by constructing different sub- and supersolutions. In the monostable case, the existence and asymptotic behavior of spatially periodic solutions connecting two steady states are first established. Some new types of entire solutions are then constructed by combining leftward and rightward pulsating traveling fronts with different speeds and a spatially periodic solution. Various qualitative features of the entire solutions are also investigated.  相似文献   

2.
We consider entire solutions of nonlocal dispersal equations with bistable nonlinearity in one-dimensional spatial domain. A two-dimensional manifold of entire solutions which behave as two traveling wave solutions coming from both directions is established by an increasing traveling wave front with nonzero wave speed. Furthermore, we show that such an entire solution is unique up to space-time translations and Liapunov stable. A key idea is to characterize the asymptotic behaviors of the solutions as t→−∞ in terms of appropriate subsolutions and supersolutions. We have to emphasize that a lack of regularizing effect occurs.  相似文献   

3.
We investigate the inside structure of one-dimensional reaction–diffusion traveling fronts. The reaction terms are of the monostable, bistable or ignition types. Assuming that the fronts are made of several components with identical diffusion and growth rates, we analyze the spreading properties of each component. In the monostable case, the fronts are classified as pulled or pushed ones, depending on the propagation speed. We prove that any localized component of a pulled front converges locally to 0 at large times in the moving frame of the front, while any component of a pushed front converges to a well determined positive proportion of the front in the moving frame. These results give a new and more complete interpretation of the pulled/pushed terminology which extends the previous definitions to the case of general transition waves. In particular, in the bistable and ignition cases, the fronts are proved to be pushed as they share the same inside structure as the pushed monostable critical fronts. Uniform convergence results and precise estimates of the left and right spreading speeds of the components of pulled and pushed fronts are also established.  相似文献   

4.
Entire solutions for monostable reaction-diffusion equations with nonlocal delay in one-dimensional spatial domain are considered. A comparison argument is employed to prove the existence of entire solutions which behave as two traveling wave solutions coming from both directions. Some new entire solutions are also constructed by mixing traveling wave solutions with heteroclinic orbits of the spatially averaged ordinary differential equations, and the existence of such a heteroclinic orbit is established using the monotone dynamical systems theory. Key techniques include the characterization of the asymptotic behaviors of solutions as t→−∞ in term of appropriate subsolutions and supersolutions. Two models of reaction-diffusion equations with nonlocal delay arising from mathematical biology are given to illustrate main results.  相似文献   

5.
This paper deals with entire solutions and the interaction of traveling wave fronts of bistable reaction-advection-diffusion equation with infinite cylinders. Assume that the equation admits three equilibria: two stable equilibria 0 and 1, and an unstable equilibrium θ. It is well known that there are different wave fronts connecting any two of those three equilibria. By considering a combination of any two of those different traveling wave fronts and constructing appropriate subsolutions and supersolutions, we establish three different types of entire solutions. Finally, we analyze a model for shear flows in cylinders to illustrate our main results.  相似文献   

6.
This paper is concerned with entire solutions ( t ∈ R) for bistable reaction-advection-diffusion equations in heterogeneous media. By using traveling curved fronts connecting a constant unstable stationary state and a stable stationary state, we proved that there exist entire solutions behaving as two traveling curved fronts coming from opposite directions, and approaching each other. Furthermore, we prove that such an entire solution is unique and Liapunov stable. The key technique is to characterize the asymptotic behavior of solutions at infinity in term of appropriate subsolutions and supersolutions.  相似文献   

7.
This paper mainly focuses on the entire solutions of a nonlocal dispersal equation with asymmetric kernel and bistable nonlinearity. Compared with symmetric case, the asymmetry of the dispersal kernel function makes more diverse types of entire solutions since it can affect the sign of the wave speeds and the symmetry of the corresponding nonincreasing and nondecreasing traveling waves. We divide the bistable case into two monostable cases by restricting the range of the variable, and obtain some merging-front entire solutions which behave as the coupling of monostable and bistable waves. Before this, we characterize the classification of the wave speeds so that the entire solutions can be constructed more clearly. Especially, we investigate the influence of the asymmetry of the kernel on the minimal and maximal wave speeds.  相似文献   

8.
We establish the existence of pulsating type entire solutions of reaction-advection-diffusion equations with monostable nonlinearities in a periodic framework. Here the nonlinearities include the classic KPP case. The pulsating type entire solutions are defined in the whole space and for all time tR. By studying a pulsating traveling front connecting a constant unstable stationary state to a stable stationary state which is allowed to be a positive function, we proved that there exist pulsating type entire solutions behaving as two pulsating traveling fronts coming from both directions, and approaching each other. The key techniques are to characterize the asymptotic behavior of the solutions as t→− in terms of appropriate subsolutions and supersolutions.  相似文献   

9.
This paper is devoted to the study of pulsating fronts and pulsating front-like entire solutions for a reaction–advection–diffusion model of two competing species in a periodic habitat. Under certain assumptions, the competition system admits a leftward and a rightward pulsating fronts in the bistable case. In this work we construct some other types of entire solutions by interacting the leftward and rightward pulsating fronts. Some of these entire solutions behave as the two pulsating fronts approaching each other from both sides of the x-axis, which turn out to be unique and Liapunov stable 2-dimensional manifolds of solutions, furthermore, the leftward and rightward pulsating fronts are on the boundary of these 2-dimensional manifolds. The others behave as the two pulsating fronts propagating from one side of the x-axis, the faster one then invades the slower one as t+. These kinds of pulsating front-like entire solutions then provide some new spreading ways other than pulsating fronts for two strongly competing species interacting in a heterogeneous habitat.  相似文献   

10.
In this paper, we study the pulsating fronts of reaction–advection-diffusion equations with two types of nonlinear term in periodic excitable media. Firstly, for the case with combustion nonlinearity, the unique front is proved to decay exponentially when it approaches the unstable limiting state. Secondly, for the degenerate monostable type nonlinearity, it is shown that the front with critical speed is unique, monotone and decays exponentially at negative end, while the fronts of noncritical speeds decay to zero non-exponentially.  相似文献   

11.
This paper is concerned with the global exponential stability of time periodic traveling fronts of reaction-advection-diffusion equations with time periodic bistable nonlinearity in infinite cylinders.It is well known that such traveling fronts exist and are asymptotically stable.In this paper,we further show that such fronts are globally exponentially stable.The main difficulty is to construct appropriate supersolutions and subsolutions.  相似文献   

12.
研究了一类一维空间周期格上的具有时滞和全局交互作用的微分系统的front⁃like整体解.通过建立适当的比较原理,并融合不同方向的波前解与连接稳定态和不稳定态的空间周期解,构造了front⁃like整体解并证明了一些定性性质.与波前解相比,front⁃like整体解能够展示出新的动力学行为.  相似文献   

13.
The paper is concerned with the existence and qualitative features of entire solutions for delayed reaction diffusion monostable systems. Here the entire solutions mean solutions defined on the $ (x,t)\in\mathbb{R}^{N+1} $. We first establish the comparison principles, construct appropriate upper and lower solutions and some upper estimates for the systems with quasimonotone nonlinearities. Then, some new types of entire solutions are constructed by mixing any finite number of traveling wave fronts with different speeds $ c\geq c_* $ and propagation directions and a spatially independent solution, where $c_*>0$ is the critical wave speed. Furthermore, various qualitative properties of entire solutions are investigated. In particularly, the relationship between the entire solution, the traveling wave fronts and a spatially independent solution are considered, respectively. At last, for the nonquasimonotone nonlinearity case, some new types of entire solutions are also investigated by introducing two auxiliary quasimonotone controlled systems and establishing some comparison theorems for Cauchy problems of the three systems.  相似文献   

14.
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt+ut=uxx V’(u) on R.The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut=uxxV’(u).Whereas a lot is known about the local stability of travelling fronts in parabolic systems,for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type.However,for the combustion or monostable type of V,the problem is much more complicated.In this paper,a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established.And then,the result is extended to the damped wave equation with a case of monostable pushed front.  相似文献   

15.
Exact, steady-state, single-front solutions are constructed for a spatially discrete bistable equation with a piecewise linear reaction term, known as a sawtooth nonlinearity. These solutions are obtained by solving second-order difference equations with variable coefficients, which are linear under certain assumptions on the expected solutions. An algorithmic procedure for constructing solutions in general, for both homogeneous and inhomogeneous diffusion, is obtained using a combination of Jacobi-Operator theory and the Sherman–Morrison formula. The existence of solutions for the difference equation, implies propagation failure of fronts for the corresponding differential-difference equation. The interval of propagation failure, which is the range of values of the detuning parameter that render stationary fronts, is studied in detail for the case of a single defect in the medium of propagation. Explicit formulae reveal precise relationships between parameter values that cause traveling fronts to fail to propagate when the interface reaches the inhomogeneities in the medium. These explicit formulae are also compared to numerical computations using the proposed algorithmic approach, which provides a check of its computational usefulness and illustrates its capabilities for problems with more complicated choices of parameter values.  相似文献   

16.
We study multiplicity of the supercritical traveling front solutions for scalar reaction–diffusion equations in infinite cylinders which invade a linearly unstable equilibrium. These equations are known to possess traveling wave solutions connecting an unstable equilibrium to the closest stable equilibrium for all speeds exceeding a critical value. We show that these are, in fact, the only traveling front solutions in the considered problems for sufficiently large speeds. In addition, we show that other traveling fronts connecting to the unstable equilibrium may exist in a certain range of the wave speed. These results are obtained with the help of a variational characterization of such solutions.  相似文献   

17.
We study invasion fronts and spreading speeds in two component reaction–diffusion systems. Using a variation of Lin's method, we construct traveling front solutions and show the existence of a bifurcation to locked fronts where both components invade at the same speed. Expansions of the wave speed as a function of the diffusion constant of one species are obtained. The bifurcation can be sub or super-critical depending on whether the locked fronts exist for parameter values above or below the bifurcation value. Interestingly, in the sub-critical case numerical simulations reveal that the spreading speed of the PDE system does not depend continuously on the coefficient of diffusion.  相似文献   

18.
19.
We investigate the large time behavior of solutions of reaction–diffusion equations with general reaction terms in periodic media. We first derive some conditions which guarantee that solutions with compactly supported initial data invade the domain. In particular, we relate such solutions with front-like solutions such as pulsating traveling fronts. Next, we focus on the homogeneous bistable equation set in a domain with periodic holes, and specifically on the cases where fronts are not known to exist. We show how the geometry of the domain can block or allow invasion. We finally exhibit a periodic domain on which the propagation takes place in an asymmetric fashion, in the sense that the invasion occurs in a direction but is blocked in the opposite one.  相似文献   

20.
We use a new method in the study of Fisher–KPP reaction–diffusion equations to prove existence of transition fronts for inhomogeneous KPP-type non-linearities in one spatial dimension. We also obtain new estimates on entire solutions of some KPP reaction–diffusion equations in several spatial dimensions. Our method is based on the construction of sub- and super-solutions to the non-linear PDE from solutions of its linearization at zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号