首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Journal of Non》2006,352(9-20):906-910
Microcrystalline silicon (μc-Si) films have been deposited on polyimide, Corning glass and c-Si(0 0 1) by rf plasma-enhanced chemical vapour deposition (PECVD) using both SiF4–H2 and SiH4–H2 plasmas. The effect of substrate pre-treatment using SiF4–He and H2 plasmas on the nucleation of crystallites is investigated. Real-time laser reflectance interferometry monitoring (LRI) revealed the existence of a ‘crystalline seeding time’ that strongly impacts on the crystallite nucleation, on the structural quality of the substrate/μc-Si interface and on film microstructure. It is found that SiF4–He pre-treatment of substrates is effective in suppressing porous and amorphous interface layer at the early nucleation stage of crystallites, resulting in direct deposition of μc-Si films also on polyimide at the temperature of 120 °C.  相似文献   

2.
Epitaxial growth of icosahedral B12As2 on c-plane 4 H-SiC substrates has been analyzed. On on-axis c-plane 4 H-SiC substrates, Synchrotron white beam x-ray topography (SWBXT) revealed the presence of a homogenous solid solution of twin and matrix B12As2 epilayer domains. High resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) both revealed the presence of an ~20 nm thick, disordered transition layer at the interface. (0003) twin boundaries are shown to possess fault vectors such as 1/3[1–100]B12As2, which originate from the mutual shift between the nucleation sites. On the contrary, B12As2 epilayers grown on c-plane 4 H-SiC substrates intentionally misoriented from (0001) towards [1–100] is shown to be free of rotational twinning. SWBXT, HRTEM and STEM all confirmed the single crystalline nature and much higher quality of the films. In addition, no intermediate layer between the epilayer and the substrate was observed. It is proposed that the vicinal steps formed by hydrogen etching on the off-axis 4 H-SiC substrate surface before deposition cause the film to adopt a single orientation during nucleation process. This work also demonstrates that c-plane 4 H-SiC with offcut toward [1–100] is potentially a good substrate choice for the growth of high-quality, single crystalline B12As2 epilayers for future device applications.  相似文献   

3.
Li+ ion conducting Li–Al–Ti–P–O thin films were fabricated on ITO-glass substrates at various temperatures from 25 to 400 °C by RF magnetron sputtering method. When the substrate temperature is higher than 300 °C, severe destruction of ITO films were confirmed by XRD (X-ray diffraction) and the abrupt transformation of one semi-circle into two semi-circles on the impedance spectra. These as-deposited Li–Al–Ti–P–O solid state electrolyte thin films have an amorphous structure confirmed by XRD and a single semicircle on the impedance spectra. Good transmission higher than 80% in the visible light range of these electrolyte thin films can fulfill the demand of electro-chromic devices. Field emission scanning electron microscopy and atomic force microscopy showed the denser, smoother and more uniform film structure with the enhanced substrate temperature. Measurements of impedance spectra indicate that the gradual increased conductivity of these Li–Al–Ti–P–O thin films with the elevation of substrate temperature from room temperature to 300 °C is originated from the increase of the pre-exponential factor (σ0). The largest Li-ion conductivity can come to 2.46 × 10? 5 S cm? 1. This inorganic solid lithium ion conductor film will have a potential application as an electrolyte layer in the field such as lithium batteries or all-solid-state EC devices.  相似文献   

4.
《Journal of Crystal Growth》2006,286(2):371-375
It is well known that there is an upper limit (<0.25 μm) for the thickness of hydrothermal thin films grown on Ti substrate in the 100–200 °C temperature range, even the reaction time is extended to several weeks. In this paper, BaTiO3 thin films have been firstly hydrothermally synthesized on titanium substrates covered with a nanoporous TiO2 layer. By using TiO2 covered substrates, the thickness of BaTiO3 films can easily reach ∼1.0 μm at 110 °C after only 2 h hydrothermal treatment. It is found that the large quantity of pores with size at the tens of nanometer range in the oxide layer served as easy paths for the diffusion of Ba2+ and OH and enabled the film grow thicker. SEM and XRD results show that the films are crack-free and in polycrystalline phase.  相似文献   

5.
《Journal of Non》2006,352(9-20):1217-1220
We have investigated PECVD-deposited ultrathin intrinsic a-Si:H layers on c-Si substrates using UV-excited photoemission spectroscopy ( = 4–8 eV) and surface photovoltage measurements. For samples deposited at 230 °C, the Urbach energy is minimal, the Fermi level closest to midgap and the interface recombination velocity has a minimum. The a-Si:H/c-Si interface density of states is comparable to that of thermally oxidized silicon interfaces. However, the measured a-Si:H dangling bond densities are generally higher than in thick films and not correlated with the Urbach energy. This is ascribed to additional disorder induced by the proximity of the a-Si:H/c-Si interface and H-rich growth in the film/substrate interface region.  相似文献   

6.
《Journal of Non》2007,353(18-21):1818-1823
This work presents a structural investigation of Li-borate thin film electrolytes prepared by rf-sputtering from targets having the nominal Li2O–2B2O3 composition. Thin films of ca. 1 μm were deposited on Si wafers and gold-covered Si substrates under argon, and their infrared spectra were measured in the 30–5000 cm−1 range. The measured spectra of thin films were compared with those calculated on the basis of the infrared properties of the bulk Li-diborate glass and by considering all optical effects in the film/substrate system. The results showed that the thin films have the key structural features of the bulk glass, but exhibit also differences in the short-range order structure and in the Li ion-site interactions. These findings were discussed in terms of cooling rate differences between melt-quenching for bulk glass and sputtering for thin films.  相似文献   

7.
Effects of deposition conditions on the structure of microcrystalline silicon carbide (μc-SiC) films prepared by hot-wire chemical vapor deposition (hot-wire CVD) method have been investigated. It is found from X-ray diffraction patterns of the film that a diffraction peak from crystallites from hexagonal polytypes of SiC is observed in addition to those of 3 C-SiC crystallites. This result is obtained in the film under a narrow deposition conditions of SiH3CH3 gas pressure of 8 Pa, the H2 gas pressure of 80–300 Pa and the total gas pressure of 40–300 Pa under fixed substrate and filament temperatures employed in this study. Furthermore, the grain size of hexagonal crystallites (about 20 nm) on c-Si substrates becomes larger than that of 3 C-SiC crystallites (about 10 nm) for the films deposited under the total gas pressure of 36–88 Pa. The fact that microcrystalline hexagonal SiC can be deposited under limited deposition conditions could be interpreted in the context of a result for c-SiC polytypes prepared by thermal CVD method.  相似文献   

8.
Highly (1 0 0)-oriented Pb0.4Sr0.6TiO3 (PST40) thin films have been prepared on the Tb doped PbTiO3 (PTT) thin film coated ITO/glass substrate by sol–gel technique. The PTT inducing layers are (1 0 0)-oriented and can help to control the orientation of PST40 thin films. Crystallization of the PST40 thin film with the PTT inducing layer is more perfect than that without PTT layer due to less distortion in the thin film. The dielectric tunability of the PST40 thin film with PTT layer therefore reaches 65%, which is 85% higher than that without PTT layer. The dielectric loss of the PST thin film is only 0.05. These results indicate that (1 0 0)-oriented Tb doped PbTiO3 can be used as an inducing layer for highly (1 0 0)-oriented tunable materials on ITO/glass substrate.  相似文献   

9.
This work describes the preparation of HfO2 thin films by the sol–gel method, starting with different precursors such as hafnium ethoxide, hafnium 2,4-pentadionate and hafnium chloride. From the solution prepared as mentioned above, thin films on silicon wafer substrates have been realized by ‘dip-coating’ with a pulling out speed of 5 cm min?1. The films densification was achieved by thermal treatment for 10 min at 100 °C and 30 min at 450 °C or 600 °C, with a heating rate of 1 °C min?1. The structural and optical properties of the films are determined employing spectroellipsometric (SE) measurements in the visible range (0.4–0.7 μm), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The main objective of this paper was to establish a correlation between the method of preparation (precursor, annealing temperature) and the properties of the obtained films. The samples prepared from pentadionate and ethoxide precursors are homogenous and uniform in thickness. The samples prepared starting from chloride precursor are thicker and proved to be less uniform in thickness. Higher non-uniformity develops in multi-deposition films or in crystallized films. A nano-porosity is present in the quasi-amorphous films as well in the crystallized one. For the samples deposited on silicon wafer, the thermal treatment induced the formation of a SiO2 layer at the coating–substrate interface.  相似文献   

10.
Y.C. Lei  W. Cai  X. An  L.X. Gao 《Journal of Non》2008,354(40-41):4572-4576
The crystallization kinetics of amorphous thin TiNi films deposited on SiO2 (or NaCl)/Al foils substrates were investigated. A dramatic acceleration of the crystallization rate was observed for amorphous attached-substrate films. The acceleration originated from the presence of the thin film/middle-wafer interface which served as a two-dimensional nucleus for the growth of the crystalline phase. In the process of non-isothermal annealing by DSC, apparent activation energies for two kinds of underlying thin TiNi films were determined to be 352.96 and 403.69 kJ/mol, respectively, which was lower than those free-standing films studied in previous works. For the process of isothermal annealing, the crystallization kinetics parameters had remarked drop, reflected from the lower Avrami exponent n (the range of 1.35–2.11) and shorter incubation time τ (the range of 0.1–0.4 min) between 758 and 775 K.  相似文献   

11.
《Journal of Non》2007,353(5-7):635-638
Core level photoelectron spectroscopy has been used to investigate the effect of substrate doping on the binding energies of 1 nm HfO2/0.6 nm SiO2/Si films. A characteristic 0.26–0.30 nm Hf0.35Si0.65O2 silicate interface is formed between the gate oxide and the SiO2 layer with an equivalent oxide thickness of 0.5 nm. High substrate doping shifts the Fermi level upwards by 0.5 eV. An interface dipole forms giving rise to a shift in the local work function. Screening from substrate electrons is confined to the SiO2/Si interface. The principal contributions modifying the core level binding energies in the oxide are the doping dependant Fermi level position and the interface dipole strength.  相似文献   

12.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

13.
《Journal of Crystal Growth》2003,247(3-4):261-268
GaN and AlN films were grown on (1 1 1) and (0 0 1) Si substrates by separate admittances of trimethylgallium (or trimethylaluminum) and ammonia (NH3) at 1000°C. A high temperature (HT) or low temperature (LT) grown AlN thin layer was employed as the buffer layer between HT GaN (or HT AlN) film and Si substrate. Experimental results show that HT AlN and HT GaN films grown on the HT AlN-coated Si substrates exhibit better crystalline quality than those deposited on the LT AlN-coated Si substrates. Transmission electron microscopy (TEM) of the HT GaN/HT AlN buffer layer/(1 1 1)Si samples shows a particular orientation relationship between the (0 0 0 1) planes of GaN film and the (1 1 1) planes of Si substrate. High quality HT GaN films were achieved on (1 1 1) Si substrates using a 200 Å thick HT AlN buffer layer. Room temperature photoluminescence spectra of the high quality HT GaN films show strong near band edge luminescence at 3.41 eV with an emission linewidth of ∼110 meV and weak yellow luminescence.  相似文献   

14.
《Journal of Non》2007,353(18-21):2066-2068
GeSe2 and Ge28Sb12Se60 chalcogenide glass thin films have been deposited on single crystal silicon substrates by vacuum thermal evaporation. The surface morphology of these films has been investigated by field emission-scanning electron microscopy and atomic force microscopy, revealing heterogeneities in their microstructure consisting of granular regions ∼15–50 nm in size, which were coarser in the case of the GeSe2 films. Typical RMS film surface roughness values were ∼0.9–1.3 nm.  相似文献   

15.
ZnO films were prepared by post deposition thermal oxidation in the ambient atmosphere of metallic Zn films (d = 100–170 nm) vacuum evaporated onto unheated indium tin oxide (ITO)-coated glass substrates. To study the effect of the substrate position during the Zn film deposition on the microstructure and optical properties (transmittance, reflectance and absorbance) of as obtained ZnO films, two set of Zn samples simultaneously deposited onto horizontally and obliquely arranged substrates were prepared. The as obtained ZnO films had a polycrystalline wurtzite structure, those obtained from normally deposited Zn films having a higher c-axis preferred orientation and a lower optical transmittance in the visible wavelength range. The optical band-gap was found to be of 3.14 eV for oxidized normally deposited virgin Zn films and of 3.16 eV for those obliquely deposited.  相似文献   

16.
《Journal of Non》2006,352(32-35):3711-3713
In this paper, the thermal conversion effects on the metal/polymer interface of poly(p-phenylene vinylene) (PPV) films were investigated. The substrates studied were: aluminum, indium–tin oxide, gold and glass (BK7). Layer-by-layer PPV films were processed from poly(xylylidene tetrahydrothiophenium chloride) and dodecylbenzenesulfonate with 5 and 20 layers. The thermal conversion treatment was performed at 110 °C and 230 °C. The films were investigated through emission spectra. Selectively, the emission occurred in large PPV segments and it showed a significant dependence on the film/metal interface. It was clear that this synthesis process reduced the metal degradation in the interface. The Huang–Rhys factor was estimated to demonstrate this effect.  相似文献   

17.
Polar and non-polar ZnMgO were synthesized on different crystallographic planes (C-, R- and M-planes) of sapphire (Al2O3) substrates by metal organic chemical vapor deposition, respectively. Under the same experimental condition, polar ZnMgO nanorods were obtained on C-Al2O3 substrate whereas non-polar ZnMgO thin films were obtained on R- and M-Al2O3 substrates. The surface morphology was significantly influenced by the competition of the preferable growth directions on different sapphire substrates. On C-Al2O3 substrate, ZnMgO nanorods were vertically well-aligned with typical lengths in the range 330–360 nm. On R- and M-Al2O3 substrates, however, ZnMgO thin films with flat surfaces were obtained, whose thickness were 150 and 20 nm, respectively. Under the same condition, the C-ZnMgO deposited on C-Al2O3 substrate has the maximum growth velocity (11 nm/nim), followed by A-ZnMgO deposited on R-Al2O3 substrate (5 nm/min), and the M-ZnMgO deposited on M-Al2O3 substrate has the minimum one (0.67 nm/min). The Near-Band-Edge (NBE) emission in Photoluminescence (PL) spectra shows a clear blueshift and a slight broadening compared with that of pure ZnO samples, which suggest that the Mg content has successfully incorporated into ZnO. The different energy blueshifts (67 meV and 98 meV) of the NBE emission demonstrate that A-ZnMgO deposited on R-Al2O3 substrate has higher Mg incorporation efficiency than C-ZnMgO on C-Al2O3 substrate.  相似文献   

18.
19.
《Journal of Non》2005,351(43-45):3562-3569
SiO2 and Na2O–SiO2 coatings have been applied on float glass and other technical glass substrates by a sol–gel dip-coating process. After drying and baking these films at temperatures up to 500 °C and for times up to 1020 min, the in-depth profiles of the different constituents were measured by secondary neutral mass spectrometry (SNMS). Sn, Al, and Si turned out to be immobile, whereas a diffusion coefficient of ≈10−17 cm2/s could be evaluated for Mg at 500 °C for the transport from float glass into the films. Ca diffused a little faster, however, especially for the Na2O–SiO2 films a saddle point and finally a peak occurred in the interface region. This interface peak was even stronger for Na, showing quite anomalous profiles. The mechanism of this peak formation is explained mainly as an up-hill diffusion process. According to this model at the interface non-bridging –O ions are formed, whose electroneutrality has to be maintained by mobile cations like Na+ and Ca2+, even diffusing against their own concentration gradient. The other glass substrates, two borofloat glasses and an alkali-poor display glass showed similar but less pronounced effects.  相似文献   

20.
We present a study of the molecular beam epitaxy of InP nanowires (NWs) on (001) oriented SrTiO3 (STO) substrates using vapor liquid solid mechanism and gold–indium as metal catalyst. The growth direction of InP NWs grown on STO(001) is compared with NWs grown on (001) and (111) oriented silicon substrates. Gold–indium dewetting under a flux of indium results in the majority of InP NWs growing vertically from the surface of STO(001). With the growth parameters we have used the NWs have a pure wurtzite structure and are free of stacking faults and cubic segments. The structural quality of the NWs is confirmed by micro-photoluminescence measurements showing a narrow peak linewidth of 6.5 meV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号