首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We establish the local symmetry group of the dynamically and kinematically exact theory of elastic shells. The group consists of an ordered triple of tensors which make the shell strain energy density invariant under change of the reference placement. Definitions of the fluid shell, the solid shell, and the membrane shell are introduced in terms of members of the symmetry group. Within solid shells we discuss in more detail the isotropic, hemitropic, and orthotropic shells and corresponding invariant properties of the strain energy density. For the physically linear shells, when the density becomes a quadratic function of the shell strain and bending tensors, reduced representations of the density are established for orthotropic, cubic-symmetric, and isotropic shells. The reduced representations contain much less independent material constants to be found from experiments.  相似文献   

2.
Upper and lower bounds are presented for the magnitude of the strain energy density in linear anisotropic elastic materials. One set of bounds is given in terms of the magnitude of the stress field, another in terms of the magnitude of the strain field. Explicit algebraic formulas are given for the bounds in the case of cubic, transversely isotropic, hexagonal and tetragonal symmetry. In the case of orthotropic symmetry the explicit bounds depend upon the solution of a cubic equation, and in the case of the monoclinic and triclinic symmetries, on the solution of sixth order equations.  相似文献   

3.
The Kelvin approach describing the structure of the generalized Hooke’s law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.  相似文献   

4.
The problem considered here is that of extremizing the strain energy density of a linear anisotropic material by varying the relative orientation between a fixed stress state and a fixed material symmetry. It is shown that the principal axes of stress must coincide with the principal axes of strain in order to minimize or maximize the strain energy density in this situation. Specific conditions for maxima and minima are obtained. These conditions involve the stress state and the elastic constants. It is shown that the symmetry coordinate system of cubic symmetry is the only situation in linear anisotropic elasticity for which a strain energy density extremum can exist for all stress states. The conditions for the extrema of the strain energy density for transversely isotropic and orthotropic materials with respect to uniaxial normal stress states are obtained and illustrated with data on the elastic constants of some composite materials. Not surprisingly, the results show that a uniaxial normal stress in the grain direction in wood minimizes the strain energy in the set of all uniaxial stress states. These extrema are of interest in structural and material optimization.  相似文献   

5.
In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks. The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helrnhotlz free energy of piezoelectric mate- rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the tensorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helrnhotlz free energy of the piezoelectric material, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With the Kirchhoff hypothesis of plate, the free vibration equations of the piezoelectric rectangular plate considering damage is established. By using Galerkin method, the equations are solved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.  相似文献   

6.
Homogeneous, anisotropic and linearly elastic solids, subjected to a given state of strain (or stress), are considered. The problem dealt with consists in finding the mutual orientations of the principal directions of strain to the material symmetry axes in order to make the strain energy density stationary. Such relative orientations are described through three Euler’s angles. When the stationarity problem is formulated for the generally anisotropic solid, it is shown that the necessary condition for stationarity demands for coaxiality of the stress and the strain tensors. From this feature, a procedure which leads to closed form solutions is proposed. To this end, tetragonal and cubic symmetry classes, together with transverse isotropy, are carefully dealt with, and for each case all the sets of Euler’s angles corresponding to critical points of the energy density are found and discussed. For these symmetries, three material parameters are then defined, which play a crucial role in ordering the energy values corresponding to each solution.  相似文献   

7.
A general constitutive theory of the stress-modulated growth of biomaterials is presented with a particular accent given to pseudo-elastic soft living tissues. The governing equations of the mechanics of solids with a growing mass are revisited within the framework of finite deformation continuum thermodynamics. The multiplicative decomposition of the deformation gradient into its elastic and growth parts is employed to study the growth of isotropic, transversely isotropic, and orthotropic biomaterials. An explicit representation of the growth part of the deformation gradient is given in each case, which leads to an effective incremental formulation in the analysis of the stress-modulated growth process. The rectangular components of the instantaneous elastic moduli tensor are derived corresponding to selected forms of the elastic strain energy function. Physically appealing structures of the stress-dependent evolution equations for the growth induced stretch ratios are proposed.  相似文献   

8.
We discuss three different ways of defining the strain measures in the non-linear micropolar continuum: (a) by a direct geometric approach, (b) considering the strain measures as the fields required by the structure of local equilibrium conditions, and (c) requiring the strain energy density of the polar-elastic body to satisfy the principle of invariance under superposed rigid-body deformations. The geometric approach (a) generates several two-point deformation measures as well as some Lagrangian and Eulerian strain measures. The ways (b) and (c) allow one to choose those Lagrangian strain measures which satisfy the additional mechanical requirements. These uniquely selected relative strain measures are called the natural ones. All the strain measures discussed here are formulated in the general coordinate-free form. They are valid for unrestricted translations, stretches and changes of orientations of the micropolar body, and are required to identically vanish in the absence of deformation. The relation of the Lagrangian stretch and wryness tensors derived here to the ones proposed in the literature is thoroughly discussed.  相似文献   

9.
In continuum mechanics, the non-centrosymmetric micropolar theory is usually used to capture the chirality inherent in materials. However, when reduced to a two dimensional (2D) isotropic problem, the resulting model becomes non-chiral. Therefore, influence of the chiral effect cannot be properly characterized by existing theories for 2D chiral solids. To circumvent this difficulty, based on reinterpretation of isotropic tensors in the 2D case, we propose a continuum theory to model the chiral effect for 2D isotropic chiral solids. A single material parameter related to chirality is introduced to characterize the coupling between the bulk deformation and the internal rotation, which is a fundamental feature of 2D chiral solids. Coherently, the proposed continuum theory is applied for the homogenization of a triangular chiral lattice, from which the effective material constants of the lattice are analytically determined. The unique behavior in the chiral lattice is demonstrated through the analyses of a static tension problem and a plane wave propagation problem. The results, which cannot be predicted by the non-chiral model, are verified by the exact solution of the discrete model.  相似文献   

10.
Finite strain solutions in compressible isotropic elasticity   总被引:6,自引:0,他引:6  
Three classes of compressible isotropic elastic solids are introduced, for each of which the strain energy, expressed as a function of the three principal invariants of the stretch tensors, is linear in two of its arguments and nonlinear in the third argument. One of these is the class of harmonic materials. Several deformation fields are examined, for which the governing equations, for general compressible isotropic elastic response, reduce to a nonlinear ordinary differential equation. For the three special classes of materials, this differential equation may be solved in closed form, giving a deformation field which is independent of the material response function, or its solution may be reduced to a single quadrature, involving the nonlinear material response function.  相似文献   

11.
Following a framework of elastic degradation and damage previously proposed by the authors, an ‘extended’ formulation of orthotropic damage in initially isotropic materials, based on volumetric/deviatoric decomposition, is presented. The formulation is founded on the concept of energy equivalence and makes use of second-order symmetric tensor damage variables. It is characterized by fourth-order damage-effect tensors (relating nominal to effective stresses and strains) built from the underlying second-order damage tensors and decomposed in product-form in isotropic and anisotropic parts. The formulation is developed in two steps. First, secant relations are established. In the isotropic case, the model embeds a path parameter allowing to range between pure volumetric to pure deviatoric damage. With the two undamaged material constants this makes a total of three constant parameters plus an evolving scalar damage variable, giving rise to a four-parameter model with two varying isotropic material coefficients. In the anisotropic case, the model is still characterized by the same three material constants plus three evolving variables which are the principal values of a second-order damage tensor. This leads to a six-parameter restricted form of orthotropic damage. In the second step, damage evolution rules are formulated in terms of a pseudo-logarithmic rate of damage. This allows to define meaningful conjugate forces that constitute a feasible space in which loading functions and damage evolution rules can be defined. The present ‘extended’ formulation is closed by the derivation of the tangent stiffness.  相似文献   

12.
We consider various methods for constructing linearly independent isotropic, gyrotropic, orthotropic, and transversally isotropic tensors. We state assertions and theorem that permit one to construct these tensors. We find linearly independent above-mentioned tensors up to and including rank six. The components of the tensor may have no symmetry or have symmetries of various types.  相似文献   

13.
The homogenization results obtained by Bacca et al. (2013a), to identify the effective second-gradient elastic materials from heterogeneous Cauchy elastic solids, are extended here to the case of phases having non-isotropic tensors of inertia. It is shown that the nonlocal constitutive tensor for the homogenized material depends on both the inertia properties of the RVE and the difference between the effective and the matrix local elastic tensors. Results show that: (i) orthotropic nonlocal effects follow from homogenization of a dilute distribution of aligned elliptical holes and, in the limit case, of cracks; (ii) even under the dilute assumption and isotropic local effective behaviour, homogenization may lead to effective nonlocal orthotropic properties.  相似文献   

14.
The main goal of this work is to clarify the relation between two strategies to formulate constitutive equations for orthotropic materials at large strains. On the one hand, the classical approach is based on the incorporation of structural tensors into the free energy function via an enriched set of invariants. On the other hand, a fictitious isotropic configuration is introduced which renders an anisotropic, undeformed reference configuration via an appropriate linear tangent map. This formulation results in a reduced (with respect to the more general setting based on structural tensors) but nevertheless physically motivated set of invariants which are related to the invariants defined by structural tensors. As a main conceptual advantage standard isotropic constitutive equations can be applied and moreover, due to the reduced set of physically motivated invariants, the numerical treatment within a finite element setting becomes manageable.  相似文献   

15.
Beltrami-Mitchell equations for non-linear elasticity theory are derived using the first Piola-Kirchhoff stress and the deformation gradient tensors as field variables so as to yield linear equilibrium and compatibility equations, respectively. In the derivation it is assumed that a strain energy density and, correspondingly, a complementary strain energy density exist, and satisfy the axiom of objectivity. Substitution for the deformation gradient in the compatibility equations yields non-linear differential equations in terms of the first Piola-Kirchhoff stress tensor which may be regarded as the Beltrami-Mitchell equations of non-linear elasticity. The equations are also derived for “semi-linear” isotropic elastic materials and the theory is illustrated by three simple examples.  相似文献   

16.
In the presence of plastic slip gradients, compatibility requires gradients in elastic rotation and stretch tensors. In a crystal lattice the gradient in elastic rotation can be related to bond angle changes at cores of so-called geometrically necessary dislocations. The corresponding continuum strain energy density can be obtained from an interatomic potential that includes two- and three-body terms. The three-body terms induce restoring moments that lead to a couple stress tensor in the continuum limit. The resulting stress and couple stress jointly satisfy a balance law. Boundary conditions are obtained upon stress, couple stress, strain and strain gradient tensors. This higher-order continuum theory was formulated by Toupin (Arch. Ration. Mech. Anal. 11 (1962) 385). Toupin's theory has been extended in this work to incorporate constitutive relations for the stress and couple stress under multiplicative elastoplasticity. The higher-order continuum theory is exploited to solve a boundary value problem of relevance to single crystal and polycrystalline nano-devices. It is demonstrated that certain slip-dominated deformation mechanisms increase the compliance of nanostructures in bending-dominated situations. The significance of these ideas in the context of continuum plasticity models is also dwelt upon.  相似文献   

17.
This paper presents a general nonlinear theory of elastic shells for large deflections and finite strains in reference to a certain natural state. By expanding the displacement components into power series in the coordinate θ3 normal to the undeformed middle surface of shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these expanded displacement components. Through the modified Hellinger-Reissner variational principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants. The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy to be an analytic function of the strain measures, general nonlinear constitutive equations are then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the geometrical and physical nonlinearities is established. The classical theories of shells are directly derivable from the present results by proper truncations of the series.  相似文献   

18.
The purpose of this paper is to develop a homogeneous, orthotropic couple-stress continuum model to take the place of the periodic heterogeneous cellular solids. Through generalizing the definition of the characteristic length for isotropic couple-stress continuum, four characteristic lengths are introduced as material engineering constants for such kind of continuum. In order to determine the effective moduli and the characteristic lengths of the effective couple-stress continuum, a Representative Volume Element (RVE) method is constructed. The effective properties are obtained based on the response of the RVE under prescribed boundary conditions, and our results agree with the analytical solutions in literature. In addition, the influences of the relative density, the topology, the size, and the properties of the solid material of cellular materials on the effective moduli as well as the characteristic lengths are discussed, respectively. Furthermore, the size effects in cellular solid beams are investigated using our effective couple-stress continuum model. The results show that the developed continuum model in this paper can precisely capture the size effects in cellular solids.  相似文献   

19.
A technique for determination of the nonaxisymmetric elastoplastic stress-strain state of laminated isotropic and rectilinearly orthotropic solids of revolution under nonisothermal loading is described. The semianalytic method of finite elements is used together with the method of successive approximations. The deformation of isotropic materials is described by the equations of the theory of deformation along trajectories of small curvature, and the deformation of orthotropic materials is described by the equations of the theory of elasticity. The thermostressed state of a three-layered solid of revolution of complex form made from isotropic and cylindrically and rectilinearly orthotropic materials subject to nonaxisymmetric heating is studied. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 4, pp. 88–95, April, 2000.  相似文献   

20.
Hydrostatic loading causes an isotropic elastic solid to be in a state of pure dilatation with no distortion relative to its unstressed reference configuration. Similarly, hydrostatic loading causes a general orthotropic solid to be distorted relative to its unstressed reference configuration. This paper introduces physically based invariants for orthotropic nonlinear elastic solids which are measures of distortions that cause deviatoric Cauchy stress. Specifically, these invariants allow for the modeling of the distortion in a hydrostatic state of stress independently of the form of the strain energy function. Consequently, use of these invariants may lead to simpler forms of the strain energy function which adequately model specific orthotropic solids.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号