首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
We develop a sixth order finite difference discretization strategy to solve the two dimensional Poisson equation, which is based on the fourth order compact discretization, multigrid method, Richardson extrapolation technique, and an operator based interpolation scheme. We use multigrid V-Cycle procedure to build our multiscale multigrid algorithm, which is similar to the full multigrid method (FMG). The multigrid computation yields fourth order accurate solution on both the fine grid and the coarse grid. A sixth order accurate coarse grid solution is computed by using the Richardson extrapolation technique. Then we apply our operator based interpolation scheme to compute sixth order accurate solution on the fine grid. Numerical experiments are conducted to show the solution accuracy and the computational efficiency of our new method, compared to Sun–Zhang’s sixth order Richardson extrapolation compact (REC) discretization strategy using Alternating Direction Implicit (ADI) method and the standard fourth order compact difference (FOC) scheme using a multigrid method.  相似文献   

2.
The special relativistic hydrodynamic equations are more complicated than the classical ones due to the nonlinear and implicit relations that exist between conservative and primitive variables. In this article, a space–time conservation element and solution element (CESE) method is proposed for solving these equations in one and two space dimensions. The CESE method has capability to capture sharp propagating wavefront of the relativistic fluids without excessive numerical diffusion or spurious oscillations. In contrast to the existing upwind finite volume schemes, the Riemann solver and reconstruction procedure are not the building blocks of the suggested method. The method differs from previous techniques because of global and local flux conservation in a space–time domain without resorting to interpolation or extrapolation. The scheme is efficient, robust, and gives results comparable to those obtained with more sophisticated algorithms, even in highly relativistic two-dimensional test problems.  相似文献   

3.
郭元  田奇  梁贤  李新亮 《计算物理》2018,35(4):397-404
为提高有限差分格式的分辨率,利用傅里叶分析对WENO格式进行色散及耗散优化,并给出优化的线性权重.用优化后的WENO格式与保单调格式(MP)进行加权混合,得到新的加权混合WENO格式(H-WENO).通过一维激波管问题、Shu-Osher问题及二维双Mach反射问题及R-T不稳定性问题对格式进行数值测试.结果显示,新格式具有强健的激波捕捉能力和对小尺度波结构的高分辨率,与原WENO格式相比改进明显.  相似文献   

4.
A new compact scheme is presented for computing wave propagation problems and Navier–Stokes equation. A combined compact difference scheme is developed for non-periodic problems (called NCCD henceforth) that simultaneously evaluates first and second derivatives, improving an existing combined compact difference (CCD) scheme. Following the methodologies in Sengupta et al. [T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy schemes for DNS and acoustics, J. Sci. Comput. 26 (2) (2006) 151–193], stability and dispersion relation preservation (DRP) property analysis is performed here for general CCD schemes for the first time, emphasizing their utility in uni- and bi-directional wave propagation problems – that is relevant to acoustic wave propagation problems. We highlight: (a) specific points in parameter space those give rise to least phase and dispersion errors for non-periodic wave problems; (b) the solution error of CCD/NCCD schemes in solving Stommel Ocean model (an elliptic p.d.e.) and (c) the effectiveness of the NCCD scheme in solving Navier–Stokes equation for the benchmark lid-driven cavity problem at high Reynolds numbers, showing that the present method is capable of providing very accurate solution using far fewer points as compared to existing solutions in the literature.  相似文献   

5.
This paper presents a third-order and fourth-order finite-volume method for solving the shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid is built upon an inflated cube placed inside a sphere and provides an almost uniform grid point distribution. The numerical schemes are based on a high-order variant of the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer. In each cell the reconstructed left and right states are either obtained via a dimension-split piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states then serve as input to an approximate Riemann solver that determines the numerical fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple quadrature points renders the resulting flux high-order. Three types of approximate Riemann solvers are compared, including the widely used solver of Rusanov, the solver of Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number flows. Spatial discretizations are paired with either a third-order or fourth-order total-variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial discretization. The numerical schemes are evaluated with several standard shallow-water test cases that emphasize accuracy and conservation properties. These tests show that the AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief discussion on extending the method to arbitrary order-of-accuracy is included.  相似文献   

6.
In this paper,a high-resolution,hybrid compact-WENO scheme is developed based on the minimized dispersion and controllable dissipation reconstruction technique.Firstly,a suffcient condition for a family of tri-diagonal compact schemes to have independent dispersion and dissipation is derived.Then,a specific 4th order compact scheme with low dispersion and adjustable dissipation is constructed and analyzed.Finally,the optimized compact scheme is blended with the WENO scheme to form the hybrid scheme.Moreover,the approximation dispersion relation approach is employed to optimize the spectral properties of the nonlinear scheme to yield the true wave propagation behavior of the finite difference scheme.Several test cases are carried out to verify the highresolution as well as the robust shock-capturing capabilities of the proposed scheme.  相似文献   

7.
Acoustic wave propagation in a fluid with a random assortment of identical cylindrical scatterers is considered. While the leading order correction to the effective wavenumber of the coherent wave is well established at dilute areal density (n0) of scatterers, in this paper the higher order dependence of the coherent wavenumber on n0 is developed in several directions. Starting from the quasi-crystalline approximation (QCA) a consistent method is described for continuing the Linton and Martin formula, which is second order in n0, to higher orders. Explicit formulas are provided for corrections to the effective wavenumber up to O (n0(4)). Then, using the QCA theory as a basis, generalized self-consistent schemes are developed and compared with self-consistent schemes using other dynamic effective medium theories. It is shown that the Linton and Martin formula provides a closed self-consistent scheme, unlike other approaches.  相似文献   

8.
胡立军  袁礼 《气体物理》2016,1(6):22-35
文章给出了一种真正多维的HLL Riemann解算器.采用AUSM分裂将通量分解成为对流通量和压力通量, 其中对流通量的计算采用迎风格式, 压力通量的计算采用HLL格式, 且将HLL格式的耗散项中的密度差用压力差代替, 从而使得格式能够分辨接触间断.为了实现数值格式真正多维的特性, 分别计算了网格界面中点和角点上的数值通量, 并且采用Simpson公式加权组合中点和角点上的数值通量得到网格界面的数值通量.为了减少重构角点处状态时的模板宽度, 计算中采用基于SDWLS梯度的线性重构获得2阶空间精度, 而时间离散采用2阶保强稳Runge-Kutta方法.数值实验表明, 相比于传统的一维HLL格式, 文章的真正多维HLL格式具有能够分辨接触间断, 以及更大的时间步长等优点.与其他能够分辨接触间断的格式(例如HLLC格式)不同, 真正多维的HLL格式在计算二维问题时不会出现激波不稳定现象.   相似文献   

9.
Computational aeroacoustic (CAA) simulation requires accurate schemes to capture the dynamics of acoustic fluctuations, which are weak compared with aerodynamic ones. In this paper, two kinds of schemes are studied and compared: the classical approach based on high order schemes for Navier–Stokes-like equations and the lattice Boltzmann method. The reference macroscopic equations are the 3D isothermal and compressible Navier–Stokes equations. A Von Neumann analysis of these linearized equations is carried out to obtain exact plane wave solutions. Three physical modes are recovered and the corresponding theoretical dispersion relations are obtained. Then the same analysis is made on the space and time discretization of the Navier–Stokes equations with the classical high order schemes to quantify the influence of both space and time discretization on the exact solutions. Different orders of discretization are considered, with and without a uniform mean flow. Three different lattice Boltzmann models are then presented and studied with the Von Neumann analysis. The theoretical dispersion relations of these models are obtained and the error terms of the model are identified and studied. It is shown that the dispersion error in the lattice Boltzmann models is only due to the space and time discretization and that the continuous discrete velocity Boltzmann equation yield the same exact dispersion as the Navier–Stokes equations. Finally, dispersion and dissipation errors of the different kind of schemes are quantitatively compared. It is found that the lattice Boltzmann method is less dissipative than high order schemes and less dispersive than a second order scheme in space with a 3-step Runge–Kutta scheme in time. The number of floating point operations at a given error level associated with these two kinds of schemes are then compared.  相似文献   

10.
Optimized prefactored compact schemes   总被引:1,自引:0,他引:1  
The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical schemes with low dispersion and dissipation errors. In this paper we describe a strategy for developing high-order accurate prefactored compact schemes, requiring very small stencil support. These schemes require fewer boundary stencils and offer simpler boundary condition implementation than existing compact schemes. The prefactorization strategy splits the central implicit schemes into forward and backward biased operators. Using Fourier analysis, we show it is possible to select the coefficients of the biased operators such that their dispersion characteristics match those of the original central compact scheme and their numerical wavenumbers have equal and opposite imaginary components. This ensures that when the forward and backward stencils are added, the original central compact scheme is recovered. To extend the resolution characteristic of the schemes, an optimization strategy is employed in which formal order of accuracy is sacrificed in preference to enhanced resolution characteristics across the range of wavenumbers realizable on a given mesh. The resulting optimized schemes yield improved dispersion characteristics compared to the standard sixth- and eighth-order compact schemes making them more suitable for high-resolution numerical simulations in gas dynamics and computational aeroacoustics. The efficiency, accuracy and convergence characteristics of the new optimized prefactored compact schemes are demonstrated by their application to several test problems.  相似文献   

11.
In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially non-oscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear hyperbolic equations, can be factored into right and left flux matrices. It is the factoring of the interpolation matrices which makes it possible to apply the WENO methodology in the reconstruction used in the semi-Lagrangian update. The spatial WENO reconstruction developed for this method is conservative and updates point values of the solution. While the third, fifth, seventh and ninth order reconstructions are presented in this paper, the scheme can be extended to arbitrarily high order. WENO reconstruction is able to achieve high order accuracy in smooth parts of the solution while being able to capture sharp interfaces without introducing oscillations. Moreover, the CFL time step restriction of a regular finite difference or finite volume WENO scheme is removed in a semi-Lagrangian framework, allowing for a cheaper and more flexible numerical realization. The quality of the proposed method is demonstrated by applying the approach to basic test problems, such as linear advection and rigid body rotation, and to classical plasma problems, such as Landau damping and the two-stream instability. Even though the method is only second order accurate in time, our numerical results suggest the use of high order reconstruction is advantageous when considering the Vlasov–Poisson system.  相似文献   

12.
The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge–Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge–Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier–Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier–Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier–Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.  相似文献   

13.
In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the Maxwell–Boltzmann distribution. The axioma holds for both Bravais and irregular lattices, implying a single framework for LB schemes for all lattice types. By solving benchmark problems we have shown that the scheme is indeed consistent with convection diffusion. Furthermore, we have compared the performance of the LB schemes with that of finite difference and finite element schemes. The comparison shows that the LB scheme has a similar performance as the one-step second-order Lax–Wendroff scheme: it has little numerical diffusion, but has a slight dispersion error. By changing the relaxation parameter ω the dispersion error can be balanced by a small increase of the numerical diffusion.  相似文献   

14.
沈智军  谢亚伟  闫伟 《计算物理》2012,29(6):807-814
使用单元中心型拉氏方法,研究一维球、柱坐标等径向对称流体力学方程组的数值格式和减少壁热误差的方法.简要分析壁热误差与差分格式修正方程的关系.通过对Riemann问题声波和HLL近似解的比较,提出减少壁热误差的一种自适应的热通量粘性.多项数值实验表明该方法可以获得令人满意的计算结果.  相似文献   

15.
Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species with practical computer time.  相似文献   

16.
We develop new gauge-covariant implicit numerical schemes for classical real-time lattice gauge theory. A new semi-implicit scheme is used to cure a numerical instability encountered in three-dimensional classical Yang-Mills simulations of heavy-ion collisions by allowing for wave propagation along one lattice direction free of numerical dispersion. We show that the scheme is gauge covariant and that the Gauss constraint is conserved even for large time steps.  相似文献   

17.
居鸿宾  沈孟育 《计算物理》1998,15(6):742-747
对差分格式进行优化处理可以提高其谱精度。与高精度(指Taylor展开精度)格式相比,优化格式放大因子的误差随波数的变化不是单调的,而是必然会出现极值点,这样就存在临界距离Rcr,在此距离内优化格式描述的数值波的积累误差小于高精度格式,而超出此距离后优化格式的误差反而大,对于非定常流及气动声学计算来说,控制差分格式的临界距离是必要的。一般的优化目标函数以每个时间推进步的误差为基础(即放大因子法),Rcr不能在优化过程中确定。对此进行分析,指出积累误差的重要性并提出以此为基础的新的优化目标函数,这样在对格式进行优化时可以直接指定临界距离,从而为控制谱精度提供方便。  相似文献   

18.
针对三维非定常、可压缩流场的Navier-Stokes方程组,本文提出一种新的双时间步长高精度快速迭代格式。该格式在时间上具有二阶精度,在空间离散上不低于三阶。在对流项与粘性项的处理上,本格式分别采用了加权ENO-强紧致格式与紧致四阶精度格式的思想。几个典型算例的实践表明:计算结果与相关实验数据比较吻合,初步表明了该算法可以在非结构网格下具有高效率与高分辨率的特征。  相似文献   

19.
N Zhang  T Huo  C Wang  T Chen  JG Zheng  P Xue 《Optics letters》2012,37(15):3075-3077
We propose a novel method called compressed sensing with linear-in-wavenumber sampling (k-linear CS) to retrieve an image for spectral-domain optical coherence tomography (SD-OCT). An array of points that is evenly spaced in wavenumber domain is sampled from an original interferogram by a preset k-linear mask. Then the compressed sensing based on l1 norm minimization is applied on these points to reconstruct an A-scan data. To get an OCT image, this method uses less than 20% of the total data as required in the typical process and gets rid of the spectral calibration with numerical interpolation in traditional CS-OCT. Therefore k-linear CS is favorable for high speed imaging. It is demonstrated that the k-linear CS has the same axial resolution performance with ~30 dB higher signal-to-noise ratio (SNR) as compared with the numerical interpolation. Imaging of bio-tissue by SD-OCT with k-linear CS is also demonstrated.  相似文献   

20.
Moving least squares interpolation schemes are in widespread use as a tool for numerical analysis on scattered data. In particular, they are often employed when solving partial differential equations on unstructured meshes, which are typically needed when the geometry defining the domain is complex. It is known that such schemes can be singular if the data points in the stencil happen to be in certain special geometric arrangements, however little research has specifically addressed this issue. In this paper, a moving least squares scheme is presented which is an appropriate tool for use when solving partial differential equations in two dimensions, and the precise conditions under which singularities occur are identified. The theory is used to develop a stencil building algorithm which automatically detects singular stencils and corrects them in an efficient manner, while attempting to maintain stencil symmetry as closely as possible. Finally, the scheme is applied in a convection–diffusion equation solver and an incompressible Navier–Stokes solver, and the results are shown to compare favourably with known analytical solutions and previously published results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号