首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
通过施加硝酸有效地使氮化硅(Si3N4)粉末的表面羟基化,以改善在水性介质中的分散性。与天然粉末相比,羟基化粉末在水性介质中产生更稳定的胶体分散。傅里叶变换红外光谱和X射线光电子能谱结果表明,随着羟基改性,Si3N4粉末的羟基含量显著增加。这有助于防止Si3N4粉末在水性介质中聚集。此外,热重分析表明羟基化Si3N4粉末的羟基含量比天然粉末高68.8%。Si3N4粉末的表面亲水性通过羟基改性而增强,并且粉末分散性随着羟基含量的增加而提高。  相似文献   

2.
通过施加硝酸有效地使氮化硅(Si_3N_4)粉末的表面羟基化,以改善在水性介质中的分散性。与天然粉末相比,羟基化粉末在水性介质中产生更稳定的胶体分散。傅里叶变换红外光谱和X射线光电子能谱结果表明,随着羟基改性,Si_3N_4粉末的羟基含量显著增加。这有助于防止Si_3N_4粉末在水性介质中聚集。此外,热重分析表明羟基化Si_3N_4粉末的羟基含量比天然粉末高68.8%。Si_3N_4粉末的表面亲水性通过羟基改性而增强,并且粉末分散性随着羟基含量的增加而提高。  相似文献   

3.
以α-Si3N4,SrCO3,Eu2O3为原料,采用碳热还原氮化法制备了Sr2Si5N8∶Eu2+荧光粉。研究了材料的结构与光谱特性,分析了影响材料发光性能的工艺因素。结果表明,石墨粉含量和助熔剂的用量对Sr2Si5N8相的形成和发光性能有重要影响。当nC/nSr=1.5,助熔剂用量为4wt%时,合成样品的主晶相为正交晶系Sr2Si5N8,在400~550 nm可见光激发下,可发射峰值波长位于609 nm荧光。激发带的位置与Eu2+离子浓度无关,为400~550 nm之间的宽带激发;但发射强度随Eu2+离子浓度的增加而增加,Eu2+离子浓度达到5mol%时发射强度达最大值,在Eu2+离子浓度为2mol%~5mol%之间,观察到发射峰的红移现象。  相似文献   

4.
采用X 射线衍射和扫描电子显微镜技术, 考察了溶胶-凝胶法制备氮化硅纳米线过程中反应条件(添加剂种类和含量、反应时间以及反应温度)对碳热还原产物组成和形貌的影响. 结果表明, 碳化后铁含量为5%(w)的凝胶, 在1300 ℃下反应10 h, Si3N4纳米线产率较高. 添加剂的种类和含量不同, 所得产物的组成和形貌也不相同.随着反应温度的升高或反应时间的延长,产物经历了一个从SiOx到Si2N2O 再到Si3N4的转变过程. 在有金属组分存在时, Si3N4纳米线由气-液-固过程形成.  相似文献   

5.
采用密度泛函理论的第一性原理方法研究了扶手椅型g-C3N4纳米带(AC-g-C3N4NRs)和锯齿型g-C3N4纳米带(ZZ-g-C3N4NRs)的电子结构和光学性质。结果表明:AC-g-C3N4NRs和ZZ-g-C3N4NRs的边缘H原子均能稳定存在。AC-g-C3N4NRs的价带顶主要由多数N原子贡献,而ZZ-g-C3N4NRs的价带顶主要由CH边缘附近的N原子贡献。AC-g-C3N4NRs的导带底主要属于纳米带一侧边缘或两侧边缘附近的C原子和N原子,而ZZ-g-C3N4NRs导带底主要属于ZZ-g-C3N4NRs的NH边缘附近的C原子和N原子。AC-g-C3N4NRs和ZZ-g-C3N4NRs的吸收系数和反射率都随纳米带宽度的增加而增加。随着AC-g-C3N4NR宽度的增加,吸收系数在低能区域产生明显的蓝移现象。  相似文献   

6.
利用类石墨氮化碳(g-C3N4)和亚稳相钙钛氧化物(CaTi2O5)固相法制备C3N4/CaTi2O5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C3N4与CaTi2O5物质的量之比(nC3N4/nCaTi2O5)对C3N4/CaTi2O5复合样品的物相结构和微观形貌的影响,同时考察C3N4/CaTi2O5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C3N4和CaTi2O5样品,C3N4/CaTi2O5复合样品在可见光下具有较高的光催化性能,随着nC3N4/nCaTi2O5增加,样品的光催化降解率随之增加而后降低,当nC3N4/nCaTi2O5=1:1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

7.
采用硼氢化钠还原法在g-C3N4的表面负载Ag和Pd纳米颗粒制备Ag/g-C3N4、Pd/g-C3N4、Ag-Pd/g-C3N4光催化剂.采用能谱仪、X射线衍射、高分辨透射电子显微镜等技术对样品进行表征.结果显示,Ag-Pd/g-C3N4复合材料中C、N、Ag和Pd元素的质量百分数分别为22.718%、59.966%、9.132%和8.184%.Ag和Pd纳米颗粒负载在g-C3N4表面可提高材料在可见光区域的吸收以及提高苯甲醇的转化率,生成苯甲醛的选择性为85.6%.  相似文献   

8.
报道了一种新型Ag/Ag3PO4/g-C3N4三元复合光催化剂的制备及其半导体界面处的快速载流子分离所引起的光催化活性的显著增强效应。通过X射线衍射,扫描电子显微镜,紫外-可见吸收光谱以及光致发光光谱等就其晶体结构、形貌、组分、光学吸收以及载流子的快速分离行为进行了表征与分析。以罗丹明B作为模型化合物分子,研究发现,所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂在可见光照射下表现出比Ag3PO4以及Ag3PO4/g-C3N4二元催化剂更为优异的光催化活性。研究认为,Ag3PO4表面尺寸约为40 nm的Ag纳米粒子在可见光下受激所产生的等离子表面共振效应以及Ag3PO4与g-C3N4界面处所形成的类似异质结结构对所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂光催化活性的显著增强起到重要作用。  相似文献   

9.
以钼酸铵和C3N4为前驱体,利用浸渍法成功制备了高性能MoO3-C3N4复合光催化剂,利用X射线衍射(XRD)、傅里叶红外(FT-IR)、高分辨电镜(HRTEM)及N2吸附-脱附曲线等测试手段对所得MoO3-C3N4光催化剂进行了结构和形貌表征。以可见光下光催化降解甲基橙反应表征MoO3-C3N4的光催化活性。实验结果表明,MoO3-C3N4光催化剂具有非常好的光催化降解性能,且MoO3含量对反应活性产生显著影响。当MoO3含量为1.6%(w/w)时光催化活性最好,其速率常数达到C3N4的50倍。通过研究发现该复合催化剂的高活性来自于其Z型光生载流子传输过程,抑制了光生电子空穴对的复合并延长了引入MoO3产生的载流子的寿命。  相似文献   

10.
采用低温热解法合成出g-C3N4和In2O3:Sn(ITO)催化剂粉体,通过静电引力作用将少量ITO纳米粉体分散在g-C3N4粉体颗粒表面制成ITO/g-C3N4异质结光催化剂。在可见光模拟系统中以乙醇为牺牲剂,检测氢气生成速率表征催化剂的光催化性能, 并借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见光漫反射吸收光谱(UV-Vis)等对催化剂粉体进行了表征。实验结果表明, ITO附着在g-C3N4颗粒表面有利于光生电子的转移和光解水析氢反应。ITO/g-C3N4催化剂较之纯g-C3N4催化剂活性显著提高。当ITO附着量为4%时,析氢速率可稳定在350 μmol·g-1·h-1。  相似文献   

11.
A new macromolecular coupling agent, low-molecular-weight polybutadiene liquid rubber (LMPB)-glycidyl methacrylate (GMA), was synthesized using solution polymerization initiated by benzoyl peroxide (BPO). The molecular structure was confirmed by FTIR and NMR. This macromolecular LMPB-GMA was used for surface modification of silicon nitride (Si3N4) nanopowder in n-heptane, chloroform, ethyl acetate, and DMF, respectively. LMPB-GMA and modified nano-Si3N4 were systematically investigated by FTIR, NMR, TGA, and TEM. The results showed that LMPB-GMA bonded and formed an organic coating layer onto the surface of nanosized Si3N4 particles. The polarity of the solvents plays an important role in this process. Strong or weak polar both affect the results. The dosage loading of LMPB-GMA is 12 wt% of nanosized Si3N4. Nanosized Si3N4 modified in ethyl acetate has better dispersibility and stability than that modified in n-heptane or DMF. TEM pictures also reveal that modified nano-Si3N4 possesses good dispersibility.  相似文献   

12.
纳米氮化硅粉粒的表面改性研究   总被引:21,自引:0,他引:21       下载免费PDF全文
纳米氮化硅具有很高的化学稳定性、耐高温性能、良好的机械性能及优异的介电性能(高介电常数、高介电强度)犤9犦,在许多领域有着广泛的应用。作为一种重要的陶瓷材料,目前对它的表面改性大多是采用烧结助剂包覆氮化硅粉粒,提高烧结助剂在氮化硅浆料中的分散程度及浆料的流动性,  相似文献   

13.
This study substantiates the chemical origin of a free-radical-driven antibacterial effect at the surface of biomedical silicon nitride (Si3N4) in comparison with the long-known effect of oxygen reduction by oxidized TiO2 at the surface of biomedical titanium alloys. Similar to the antibacterial effect exerted by reactive oxygen species (ROS; i.e., superoxide anions, hydroxyl radicals, singlet oxygen, and hydrogen peroxide) from TiO2, reactive nitrogen species (RNS), such as nitrous oxide (N2O), nitric oxide (NO), and peroxynitrite (?OONO) in Si3N4, severely affect bacterial metabolism and lead to their lysis. However, in vitro experiment with gram-positive Staphylococcus epidermidis (S. epidermidis, henceforth) revealed that ROS and RNS promoted different mechanisms of lysis. Fluorescence microscopy of NO radicals and in situ time-lapse Raman spectroscopy revealed different metabolic responses of living bacteria in contact with different substrates. After 48 h, the DNA of bacteria showed complete destruction on Si3N4, while carbohydrates of the peptidoglycan membrane induced bacterial degradation on Ti-alloy substrates. Different spectroscopic fingerprints for bacterial lysis documented the distinct effects of RNS and ROS. Spontaneously activated in aqueous environment, the RNS chemistry of Si3N4 proved much more effective in counteracting bacterial proliferation as compared to ROS formed on TiO2, which requires external energy (photocatalytic activation) to enhance effectiveness. Independent of surface topography, the antibacterial effect observed on Si3N4 substrates is due to its unique kinetics ultimately producing NO and represents a new intriguing avenue to fight bacterial resistance to conventional antibiotics.  相似文献   

14.
The physicochemical and catalytic properties of palladium catalysts were studied in the deep oxidation of methane. The catalysts were deposited on silicon nitride from aqueous (Pd/Si3N4-a) and toluene (Pd/Si3N4-t) solutions of palladium acetate. The use of aqueous and organic solutions of palladium acetate, all other preparation conditions being equal, resulted in the formation of palladium systems with different catalytic properties. The sample from Pd/Si3N4-t was characterized by high activity and stability. The systems studied had different structures and adsorption properties of palladium nanoparticles, which influenced the form of reagent adsorption, catalytic properties, and mechanism of surface reactions. The suggestion was made that the solvent played a key role in the formation of the active surface of Pd-containing catalytic systems.  相似文献   

15.
Summary Five commercially available -Si3N4 powders and one in the modification were subjected to Auger electron spectroscopy (AES) and carrier-gas-heat extraction (CGHE) analysis.AES depth profiles of the oxygen/nitrogen ratio could be obtained, from which total oxygen contents were calculated and compared to CGHE data. It is demonstrated that by the latter method also dissolved oxygen in -Si3N4 is detected, whereas by AES only chemically bound oxygen can semiquantitatively be analyzed. Evidence is found for the existence of water, adsorbed or present as hydroxyl groups, near the surface.
Vergleichende Oberflächen- und Bulkanalyse von Sauerstoff in Si3N4-Pulvern
List of Symbols A Surface area of an idealized Si3N4 grain - c o AES Bulk concn. (by wt.) of oxygen in Si3N4 as estimated from AES depth profiles - C O GHE Bulk concn. (by wt.) of oxygen in Si3N4 as obtained using CGHE in the fixed temperature mode - C pr Bulk concn. (by wt.) of oxygen in Si3N4 as obtained using CGHE in the temperature programme mode - Csurf Bulk concn. (by wt.) of oxygen in Si3N4, tentatively assigned to superficial oxygen on Si3N4 particles, as obtained using CGHE in the temperature programme mode - C U c o AES as recalculated from XU - d Diameter of an idealized Si3N4 grain (1 m) - Mindex Formula mass of the species named in the index (O, 2 SiO2, Si3N4) - m o Mass of oxygen in the Si3N4 material - Mx Estimated formula mass of a (SiO2)2XSi3N4 compound as detected by AES via X - r Radius of an idealized Si3N4 grain (0.5 m) - V Volume of an idealized Si3N4 grain - X atomic oxygen-to-nitrogen ratio (AES) - Xa X values obtained in the scanning beam (area) mode - Xdec X values obtained in the fixed beam (point) mode after about 30 min measuring time (i.e., in some cases, severe decomposition) - Xp X values obtained in the fixed beam (point) mode within about 2 min measuring time (before severe decomposition) - XU Background value for X in the AES depth profiles - xxps Atomic oxygen-to-nitrogen ratio as obtained from XPS data - Z Sputter depth - Z E End value for the integration below the depth profile curves - O Oxygen mass per unit area - O Oxygen mass per unit volume (recalculated bulk concentration) - U Oxygen mass per unit volume as recalculated from XU.  相似文献   

16.
The tribological properties of Si3N4 ball sliding against diamond‐like carbon (DLC) films were investigated using a ball‐on‐disc tribometer under dry friction and oil lubrications, respectively. The influence of nano boron nitride particle as lubricant additive in poly‐α‐olefin (PAO) oil on the tribological properties of Si3N4/DLC films was evaluated. The microstructure of DLC films was measured by Raman spectroscopy and X‐ray photoelectron spectroscopy. The experimental results show coefficient of friction (COF) of Si3N4/DLC films was as low as 0.035 due to the formation of graphite‐like transfer films under dry friction condition. It also indicates that the tribological properties of Si3N4/DLC films were influenced significantly by the viscosity of oil and the content of nano boron nitride particle in PAO oil. COF increases with the viscosity of PAO oil increasing. Si3N4/DLC films exhibit the superlubricity behaviors (μ=0.001 and nonmeasurable wear) under PAO 6 oil with 1.0 wt% nano boron nitride particle lubrication, indicating that the improved boundary lubrication behaviors have indeed been responsible for the significantly reduced friction. Nano boron nitride additive is used as solid lubricant‐like nano scale ball bearing to the pointlike contact and a soft phase bond with the weak van der Waals interaction force on the contact surface to improve the lubrication behaviors of Si3N4/DLC films. The potential usefulness of nano boron nitride as lubricant additive in PAO oil for Si3N4/DLC films has been demonstrated under oil lubrication conditions. The present work will extend the wide application of nano particle additive and introduce a new approach to superlubricity under boundary lubrication in future technological areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.  相似文献   

18.
The interactions that occur between an amorphous silicon nitride (Si3N4) nanofiller and an epoxy matrix are examined, as revealed by rheological changes in a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin prior to curing and thermal analysis, scanning electron microscopy, and dielectric spectroscopy of the resulting amine-cured systems. The results show that isothermally heating the as-received Si3N4 in DGEBA at 100 °C leads to increases in the viscosity of the mixture. Analysis of rheological data obtained from unfilled, as-received Si3N4-filled, and calcined Si3N4-filled epoxy systems leads us to interpret this increase in viscosity as arising from reactions between epoxide groups of the DGEBA and nanoparticle surface groups, notably involving surface amines, which are stimulated by the elevated temperature. The extent of this filler/resin reaction depends on the material processing protocol used, particularly prior calcination of the Si3N4 and the temperature and duration of nanoparticle/DGEBA mixing. Glass transition temperature data show that cured samples prepared using different methods have significantly different glass transition temperatures, which is a consequence of the epoxide/amine stoichiometric imbalances that result from prior reactions between the Si3N4 and the DGEBA. Consistent behavior was observed in the dielectric response. These results demonstrate that ultimate macroscopic properties of Si3N4/epoxy nanocomposites are critically affected by details of the processing protocol. Furthermore, we infer that, by using controlled prior calcination of the Si3N4, it is may be possible to vary the initial surface chemistry of the nanoparticles so as to adjust their reactivity with epoxy-containing moieties. Here, this is exemplified using only two somewhat extreme thermal treatments and a bifunctional DGEBA-type compound but, we suggest, that the concept may be extended to many other mono- and polyfunctional epoxy-containing compounds in order to generate a wide range of different grafted nanoparticle systems. This strategy may provide a versatile means of adjusting the surface chemistry of inorganic nitride nanoparticles, in order to tailor their surface chemistry and thereby modify resulting nanocomposite properties.  相似文献   

19.
Polyetheretherketone (PEEK) is a popular polymeric biomaterial which is primarily used as an intervertebral spacer in spinal fusion surgery; but it is developed for trauma, prosthodontics, maxillofacial, and cranial implants. It has the purported advantages of an elastic modulus which is similar to native bone and it can be easily formed into custom 3D shapes. Nevertheless, PEEK's disadvantages include its poor antibacterial resistance, lack of bioactivity, and radiographic transparency. This study presents a simple approach to correcting these three shortcomings while preserving the base polymer's biocompatibility, chemical stability, and elastic modulus. The proposed strategy consists of preparing a PEEK composite by dispersing a minor fraction (i.e., 15 vol%) of a silicon nitride (Si3N4) powder within its matrix. In vitro tests of PEEK composites with three Si3N4 variants—β‐Si3N4, α‐Si3N4, and β‐SiYAlON—demonstrate significant improvements in the polymer's osteoconductive versus SaOS‐2 cells and bacteriostatic properties versus gram‐positive Staphylococcus epidermidis bacteria. These properties are clearly a consequence of adding the bioceramic dispersoids, according to chemistry similar to that previously demonstrated for bulk Si3N4 ceramics in terms of osteogenic behavior (vs both osteosarcoma and mesenchymal progenitor cells) and antibacterial properties (vs both gram‐positive and gram‐negative bacteria).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号