共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an implicit high-order hybridizable discontinuous Galerkin method for the steady-state and time-dependent incompressible Navier–Stokes equations. The method is devised by using the discontinuous Galerkin discretization for a velocity gradient-pressure–velocity formulation of the incompressible Navier–Stokes equations with a special choice of the numerical traces. The method possesses several unique features which distinguish itself from other discontinuous Galerkin methods. First, it reduces the globally coupled unknowns to the approximate trace of the velocity and the mean of the pressure on element boundaries, thereby leading to a significant reduction in the degrees of freedom. Moreover, if the augmented Lagrangian method is used to solve the linearized system, the globally coupled unknowns become the approximate trace of the velocity only. Second, it provides, for smooth viscous-dominated problems, approximations of the velocity, pressure, and velocity gradient which converge with the optimal order of k + 1 in the L2-norm, when polynomials of degree k?0 are used for all components of the approximate solution. And third, it displays superconvergence properties that allow us to use the above-mentioned optimal convergence properties to define an element-by-element postprocessing scheme to compute a new and better approximate velocity. Indeed, this new approximation is exactly divergence-free, H (div)-conforming, and converges with order k + 2 for k ? 1 and with order 1 for k = 0 in the L2-norm. Moreover, a novel and systematic way is proposed for imposing boundary conditions for the stress, viscous stress, vorticity and pressure which are not naturally associated with the weak formulation of the method. This can be done on different parts of the boundary and does not result in the degradation of the optimal order of convergence properties of the method. Extensive numerical results are presented to demonstrate the convergence and accuracy properties of the method for a wide range of Reynolds numbers and for various polynomial degrees. 相似文献
2.
A novel numerical method for two-fluid flow computations is presented, which combines the space–time discontinuous Galerkin finite element discretization with the level set method and cut-cell based interface tracking. The space–time discontinuous Galerkin (STDG) finite element method offers high accuracy, an inherent ability to handle discontinuities and a very local stencil, making it relatively easy to combine with local hp-refinement. The front tracking is incorporated via cut-cell mesh refinement to ensure a sharp interface between the fluids. To compute the interface dynamics the level set method (LSM) is used because of its ability to deal with merging and breakup. Also, the LSM is easy to extend to higher dimensions. Small cells arising from the cut-cell refinement are merged to improve the stability and performance. The interface conditions are incorporated in the numerical flux at the interface and the STDG discretization ensures that the scheme is conservative as long as the numerical fluxes are conservative. The numerical method is applied to one and two dimensional two-fluid test problems using the Euler equations. 相似文献
3.
4.
In this paper, we present hybridizable discontinuous Galerkin methods for the numerical solution of steady and time-dependent nonlinear convection–diffusion equations. The methods are devised by expressing the approximate scalar variable and corresponding flux in terms of an approximate trace of the scalar variable and then explicitly enforcing the jump condition of the numerical fluxes across the element boundary. Applying the Newton–Raphson procedure and the hybridization technique, we obtain a global equation system solely in terms of the approximate trace of the scalar variable at every Newton iteration. The high number of globally coupled degrees of freedom in the discontinuous Galerkin approximation is therefore significantly reduced. We then extend the method to time-dependent problems by approximating the time derivative by means of backward difference formulae. When the time-marching method is (p+1)th order accurate and when polynomials of degree p?0 are used to represent the scalar variable, each component of the flux and the approximate trace, we observe that the approximations for the scalar variable and the flux converge with the optimal order of p+1 in the L2-norm. Finally, we apply element-by-element postprocessing schemes to obtain new approximations of the flux and the scalar variable. The new approximate flux, which has a continuous interelement normal component, is shown to converge with order p+1 in the L2-norm. The new approximate scalar variable is shown to converge with order p+2 in the L2-norm. The postprocessing is performed at the element level and is thus much less expensive than the solution procedure. For the time-dependent case, the postprocessing does not need to be applied at each time step but only at the times for which an enhanced solution is required. Extensive numerical results are provided to demonstrate the performance of the present method. 相似文献
5.
R.E. Heath I.M. Gamba P.J. Morrison C. Michler 《Journal of computational physics》2012,231(4):1140-1174
A discontinuous Galerkin method for approximating the Vlasov–Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function and weakly enforces continuity of the electric field through mesh interfaces and boundary conditions. The performance of the method is investigated by computing several examples and error estimates of the approximation are stated. In particular, computed results are benchmarked against established theoretical results for linear advection and the phenomenon of linear Landau damping for both the Maxwell and Lorentz distributions. Moreover, two nonlinear problems are considered: nonlinear Landau damping and a version of the two-stream instability are computed. For the latter, fine scale details of the resulting long-time BGK-like state are presented. Conservation laws are examined and various comparisons to theory are made. The results obtained demonstrate that the discontinuous Galerkin method is a viable option for integrating the Vlasov–Poisson system. 相似文献
6.
In this paper we propose a new local discontinuous Galerkin method to directly solve Hamilton–Jacobi equations. The scheme is a natural extension of the monotone scheme. For the linear case with constant coefficients, the method is equivalent to the discontinuous Galerkin method for conservation laws. Thus, stability and error analysis are obtained under the framework of conservation laws. For both convex and noneconvex Hamiltonian, optimal (k + 1)th order of accuracy for smooth solutions are obtained with piecewise kth order polynomial approximations. The scheme is numerically tested on a variety of one and two dimensional problems. The method works well to capture sharp corners (discontinuous derivatives) and have the solution converges to the viscosity solution. 相似文献
7.
Hong Luo Luqing Luo Robert Nourgaliev Vincent A. Mousseau Nam Dinh 《Journal of computational physics》2010,229(19):6961-6978
A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier–Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier–Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi–Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier–Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier–Stokes equations. 相似文献
8.
With many superior features, Runge–Kutta discontinuous Galerkin method (RKDG), which adopts Discontinuous Galerkin method (DG) for space discretization and Runge–Kutta method (RK) for time integration, has been an attractive alternative to the finite difference based high-order Computational Aeroacoustics (CAA) approaches. However, when it comes to complex physical problems, especially the ones involving irregular geometries, the time step size of an explicit RK scheme is limited by the smallest grid size in the computational domain, demanding a high computational cost for obtaining time accurate numerical solutions in CAA. For computational efficiency, high-order RK method with nonuniform time step sizes on nonuniform meshes is developed in this paper. In order to ensure correct communication of solutions on the interfaces of grids with different time step sizes, the values at intermediate-stages of the Runge–Kutta time integration on the elements neighboring such interfaces are coupled with minimal dissipation and dispersion errors. Based upon the general form of an explicit p-stage RK scheme, a linear coupling procedure is proposed, with details on the coefficient matrices and execution steps at common time-levels and intermediate time-levels. Applications of the coupling procedures to Runge–Kutta schemes frequently used in simulation of fluid flow and acoustics are given, including the third-order TVD scheme, and low-storage low dissipation and low dispersion (LDDRK) schemes. In addition, an analysis on the stability of coupling procedures on a nonuniform grid is carried out. For validation, numerical experiments on one-dimensional and two-dimensional problems are presented to illustrate the stability and accuracy of proposed nonuniform time-step RKDG scheme, as well as the computational benefits it brings. Application to a one-dimensional nonlinear problem is also investigated. 相似文献
9.
Lucas C. Wilcox Georg Stadler Carsten Burstedde Omar Ghattas 《Journal of computational physics》2010,229(24):9373-9396
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer. 相似文献
10.
Benjamin Kadoch Dmitry Kolomenskiy Philippe Angot Kai Schneider 《Journal of computational physics》2012,231(12):4365-4383
A volume penalization method for imposing homogeneous Neumann boundary conditions in advection–diffusion equations is presented. Thus complex geometries which even may vary in time can be treated efficiently using discretizations on a Cartesian grid. A mathematical analysis of the method is conducted first for the one-dimensional heat equation which yields estimates of the penalization error. The results are then confirmed numerically in one and two space dimensions. Simulations of two-dimensional incompressible flows with passive scalars using a classical Fourier pseudo-spectral method validate the approach for moving obstacles. The potential of the method for real world applications is illustrated by simulating a simplified dynamical mixer where for the fluid flow and the scalar transport no-slip and no-flux boundary conditions are imposed, respectively. 相似文献
11.
Caterina Calgaro Emmanuel Creusé Thierry Goudon 《Journal of computational physics》2008,227(9):4671-4696
This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier–Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh–Taylor instability evolution is carefully investigated. 相似文献
12.
A numerical method for computing the ground state solution of Bose–Einstein condensates modeled by the Gross–Pitaevskii equation is presented. In this method, the three-dimensional computational domain is divided into hexahedral elements in which the solution is approximated by a sum of basis functions. Both polynomial and plane wave bases are considered for this purpose, and Lagrange multipliers are introduced to weakly enforce the interelement continuity of the solution. The ground state is computed by an iterative procedure for minimizing the energy. The performance results obtained for several numerical experiments demonstrate that the proposed method is more computationally efficient than similar solution approaches based on the standard higher-order finite element method. 相似文献
13.
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time–space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time–space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2M)th-order accuracy and is always stable. The 2D method can reach (2M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time–space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. 相似文献
14.
We study time step restrictions due to linear stability constraints of Runge–Kutta Discontinuous Galerkin methods on triangular grids. The scalar advection equation is discretized in space by the Discontinuous Galerkin method with either the Lax–Friedrichs flux or the upwind flux, and integrated in time with various Runge–Kutta schemes designed for linear wave propagation problems or non-linear applications. Von–Neumann-like analyses are performed on structured periodic grids made up of congruent elements, to investigate the influence of element shape on the stability restrictions. We assess CFL conditions based on different element size measures, among which only the radius of the inscribed circle and the shortest height prove appropriate, although they are not totally independent of the triangle shape. We explain their general behaviour with respect to element quality, and report the corresponding Courant numbers with both types of flux and polynomial order p ranging from 1 to 10, for use as guidelines in practical simulations. We also compare the performance of the Lax–Friedrichs flux and the upwind flux, and we draw general conclusions about the relative computational efficiency of RK schemes. The application of CFL conditions to two examples involving respectively an unstructured and a hybrid grid confirms our results, although it shows that local stability criteria tend to yield too restrictive conditions. 相似文献
15.
A Runge–Kutta discontinuous Galerkin method to solve the hyperbolic part of reactive Navier–Stokes equations written in conservation form is presented. Complex thermodynamics laws are taken into account. Particular care has been taken to solve the stiff gaseous interfaces correctly with no restrictive hypothesis. 1D and 2D test cases are presented. 相似文献
16.
《Waves in Random and Complex Media》2013,23(2):142-151
In this paper, exponential rational function method is applied to obtain analytical solutions of the space–time fractional Fokas equation, the space–time fractional Zakharov Kuznetsov Benjamin Bona Mahony, and the space–time fractional coupled Burgers’ equations. As a result, some exact solutions for them are successfully established. These solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie’s modified Riemann–Liouville sense. The exact solutions obtained by the proposed method indicate that the approach is easy to implement and effective. 相似文献
17.
We study the performance of methods of lines combining discontinuous Galerkin spatial discretizations and explicit Runge–Kutta time integrators, with the aim of deriving optimal Runge–Kutta schemes for wave propagation applications. We review relevant Runge–Kutta methods from literature, and consider schemes of order q from 3 to 4, and number of stages up to q + 4, for optimization. From a user point of view, the problem of the computational efficiency involves the choice of the best combination of mesh and numerical method; two scenarios are defined. In the first one, the element size is totally free, and a 8-stage, fourth-order Runge–Kutta scheme is found to minimize a cost measure depending on both accuracy and stability. In the second one, the elements are assumed to be constrained to such a small size by geometrical features of the computational domain, that accuracy is disregarded. We then derive one 7-stage, third-order scheme and one 8-stage, fourth-order scheme that maximize the stability limit. The performance of the three new schemes is thoroughly analyzed, and the benefits are illustrated with two examples. For each of these Runge–Kutta methods, we provide the coefficients for a 2N-storage implementation, along with the information needed by the user to employ them optimally. 相似文献
18.
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge-Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method. 相似文献
19.
The Vlasov–Poisson equations describe the evolution of a collisionless plasma, represented through a probability density function (PDF) that self-interacts via an electrostatic force. One of the main difficulties in numerically solving this system is the severe time-step restriction that arises from parts of the PDF associated with moderate-to-large velocities. The dominant approach in the plasma physics community for removing these time-step restrictions is the so-called particle-in-cell (PIC) method, which discretizes the distribution function into a set of macro-particles, while the electric field is represented on a mesh. Several alternatives to this approach exist, including fully Lagrangian, fully Eulerian, and so-called semi-Lagrangian methods. The focus of this work is the semi-Lagrangian approach, which begins with a grid-based Eulerian representation of both the PDF and the electric field, then evolves the PDF via Lagrangian dynamics, and finally projects this evolved field back onto the original Eulerian mesh. In particular, we develop in this work a method that discretizes the 1 + 1 Vlasov–Poisson system via a high-order discontinuous Galerkin (DG) method in phase space, and an operator split, semi-Lagrangian method in time. Second-order accuracy in time is relatively easy to achieve via Strang operator splitting. With additional work, using higher-order splitting and a higher-order method of characteristics, we also demonstrate how to push this scheme to fourth-order accuracy in time. We show how to resolve all of the Lagrangian dynamics in such a way that mass is exactly conserved, positivity is maintained, and high-order accuracy is achieved. The Poisson equation is solved to high-order via the smallest stencil local discontinuous Galerkin (LDG) approach. We test the proposed scheme on several standard test cases. 相似文献
20.
The special relativistic hydrodynamic equations are more complicated than the classical ones due to the nonlinear and implicit relations that exist between conservative and primitive variables. In this article, a space–time conservation element and solution element (CESE) method is proposed for solving these equations in one and two space dimensions. The CESE method has capability to capture sharp propagating wavefront of the relativistic fluids without excessive numerical diffusion or spurious oscillations. In contrast to the existing upwind finite volume schemes, the Riemann solver and reconstruction procedure are not the building blocks of the suggested method. The method differs from previous techniques because of global and local flux conservation in a space–time domain without resorting to interpolation or extrapolation. The scheme is efficient, robust, and gives results comparable to those obtained with more sophisticated algorithms, even in highly relativistic two-dimensional test problems. 相似文献