首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基质组成对Eu,Dy共掺杂铝酸锶发光性能的影响   总被引:3,自引:1,他引:2  
吕兴栋  方勤  舒万艮 《发光学报》2005,26(6):727-732
研究了基质组成对xSrO·yAl2O3:Eu2+,Dy3+体系长余辉发光性能的影响,并对其影响机理进行了探讨.XRD分析结果和长余辉发光性能表明,改变Al2O3/SrO比率可以获得长余辉发光性能较好的三种基质相:SrAl2O4:Eu2+,Dy3+、Sr4Al14O25:Eu2+,Dy3+和SrAl4O7:Eu2+,Dy3+.激发与发射光谱性能分析和余辉衰减特性分析结果表明,随着基质中Sr/Al比例的减小,激发光谱向短波方向延伸,发射峰蓝移,初始余辉亮度越高,余辉持续时间越长.热释光谱分析表明,贫锶相晶格中的陷阱深度与密度较大,因而显示出较好的长余辉发光性能.  相似文献   

2.
The silicates Ca3Sc2Si3O12, Ca3Y2Si3O12 and Ca3Lu2Si3O12, both undoped and doped with Pr3+ ions, have been synthesized by solid-state reaction at high temperature. The luminescence spectroscopy and the excited state dynamics of the materials have been studied upon VUV and X-ray excitation using synchrotron radiation. All doped samples have shown efficient 5d-4f emission upon direct VUV excitation of 5d levels, but only Ca3Sc2Si3O12:Pr3+ shows luminescence upon interband VUV or X-ray excitation. The VUV excited emission spectra of Ca3Y2Si3O12:Pr3+ and Ca3Lu2Si3O12:Pr3+ show features attributed to emission from two distinct sites accommodating the Pr3+ dopant. The decay kinetics of the Pr3+ 5d-4f emission in Ca3Sc2Si3O12:Pr3+ upon VUV excitation across the band gap are characterized by decay times in the range 25-28 ns with no significant rise after the excitation pulse. They appear to be faster upon X-ray irradiation than for VUV excitation. Weak afterglow components are attributed to defect luminescence.  相似文献   

3.
Europium-doped yttrium-silicon-oxide-nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2O7 to nitride YSi3N5 state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465 nm with 300 nm excitation and a characteristic red emission of Eu^3+ at 612 nm with 230 nm excitation. The YSi3N5:EU phosphor shows a broad emission band centred at 595nm with some sharp peaks of Eu^3+ with 325nm excitation. The absorption of the studied phosphors increases from 450 to 700hm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390 nm excitation.  相似文献   

4.
The Sr2Si5N8:Eu2+ phosphors, both undoped and doped with Tm3+, were synthesized by high temperature solid-state method. The XRD pattern shows that only Sr2Si5N8 phase is formed whatever Tm3+ was doped or not. The peak positions of both phosphors are centered at 612 nm which is assigned to the 4f65d→4f7 transition of Eu2+. It implies that the crystal field, which affects the 5d electron states of Eu2+, is not changed dramatically after the phosphor is doped with Tm3+. The afterglow time is about 10 min after Tm3+ ion is introduced into the phosphor. The concentration of Tm3+ has little influence on the afterglow time of the phosphor. The depths of trap energy level of the two phosphors were calculated based on the TL spectra. The depths of Sr2Si5N8:Eu2+ and Sr2Si5N8:Eu2+, Tm3+ are 1.75 and 1.01 eV, respectively.  相似文献   

5.
M2Si5N8:Eu2+-based(M=Ca,Sr,Ba)red-emitting phosphors are fabricated at relatively low temperature(1200°C)and atmospheric pressure using a simple solid-state reaction process.Several processing parameters are systematically investigated to optimize the phosphors structural characterization and photoluminescence performance,including the amount of europium and the properties of the precursor materials.The as-prepared M2Si5N8:Eu2+-based(M=Ca,Sr,Ba)phosphors are orange in color and are intensively emitted in the red region of 580–670 nm under 465 nm excitation.  相似文献   

6.
Using urea as fuel, SrMgAl10O17:Eu, Dy phosphor was prepared by a combustion method. Its luminescence properties under ultraviolet (UV) excitation were investigated. Pure SrMgAl10O17 phase was formed by urea-nitrate solution combustion synthesis at 550 °C. The results indicated that the emission spectra of SrMgAl10O17:Eu, Dy has one main peak at 460 nm and one shoulder peak near 516 nm, which are ascribed to two different types of luminescent Eu2+ centers existing in the SrMgAl10O17 matrix crystal. The blue luminescence emission of SrMgAl10O17:Eu phosphors was improved under UV excitation by codoping Dy3+ ions. The SrMgAl10O17:Eu phosphors showed green afterglow (λ=516 nm) when Dy3+ ions were doped. Dy3+ ions not only successfully play the role of sensitizer for energy transfer in the system, but also act as trap levels and capture the free holes in the spinel blocks.  相似文献   

7.
The calcium aluminates doped with Eu ions, Ca5Al8O14: Eu, phosphors are prepared by the combustion method. The formation of crystalline aluminates was confirmed by X-ray diffraction pattern. The prepared phosphors were characterized by SEM, TGA, DTA, particle size analyzer and Photoluminescence (PL) techniques. From the UV-excited luminescence spectra it was found that the Eu ions acts as a luminescent centre with luminescence at the blue (λ max = 470 nm) region due to 4f 65d 1 → 4f 7 transition. The excitation spectra show the broad band at 355 nm wavelength (λ em = 470 nm). The excitation 355 nm is a mercury free excitation and therefore Ca5Al8O14: Eu may be useful for the solid state lighting phosphor in lamp industry.   相似文献   

8.
红色长余辉材料Y2O2S : Eu,Si,M 的制备及发光性能   总被引:2,自引:2,他引:0       下载免费PDF全文
采用高温固相法合成了红色长余辉材料Y2O2S : Eu, Si, M(M=Mg,Ca,Sr,Ba),利用X晶体衍射、发光光谱、热释光测量等对材料的性能进行了表征。结果分析表明:Y2O2S : Eu,Si,M(M=Mg,Ca,Sr,Ba)长余辉材料的最大荧光发射和余辉发射峰完全一致都位于627 nm, 产生红光发射,是典型的Eu3+离子的5D0-7F2跃迁。激发停止后,能够产生较好的余辉性能。碱土金属离子能够增强其荧光发射峰强度并对余辉性能有一定促进作用,其中以Mg2+最好,其次是Ba2+。  相似文献   

9.
The thermo-luminescence (TL) of rare earth ions RE3+ (RE=Ln, excluding Pm, Eu and Lu) co-doped phosphors CaGa2S4:Eu2+, RE3+ was studied between room temperature and 300 °C, and 3D thermo-luminescence of the phosphors were measured from room temperature to 400 °C. The basic material CaGa2S4:Eu2+, showed at least two bands in the TL glow curve. Changing the auxiliary activator RE3+ (rare earth ion), intensities and the positions of the TL glow curve peaks were affected significantly. For the phosphors with long afterglow, auxiliary activator such as Ce3+, Pr3+, Gd3+, Tb3+, Ho3+, or Y3+ created some new defects in these compounds at lower trap levels and enhanced their TL intensities. The Nd3+ or Er3+ auxiliary activator only enhanced TL intensities to a low extent, so these two phosphors have short persistent luminescence at room temperature. TL intensities of La3+, Sm3+, Tm3+ or Yb3+ co-doped phosphors were suppressed greatly and no afterglow was shown. The relationship between auxiliary activators and corresponding thermo-luminescence curves of phosphors CaGa2S4:Eu2+, RE3+ are discussed in detail. According to our results, suitable activation energy and enough high corresponding trap density are necessary for the phosphor with long afterglow.  相似文献   

10.
采用高温固相法在单一基质中制备了具有多模态发光特性的系列荧光粉BaGa2Si2O8∶Eu2+,Eu3+,Pr3+,掺入适量的Pr3+可显著改善荧光粉的余辉发光性能。结果表明,该系列荧光粉在254 nm或365 nm的光激发下,具有不同颜色的光致发光和余辉发光,体现出多模发光特征;同时该系列荧光粉的余辉发光还具有不同的衰减时间。根据这些发光特性,选用合适的荧光粉制作了系列发光图案。相关典型应用示例表明,该发光图案的多模发光特征可应用于发光防伪应用,而基于其差异化的余辉衰减特性,还可以设计出可动态变化的余辉发光图案,从而增加发光防伪和加密的安全层级。  相似文献   

11.
杨建军  陈国动  杜飞飞  刘泉林 《中国物理 B》2012,21(7):77802-077802
Nitrogen-rich Ca-α-sialon: Eu2+ phosphors with saturated calcium solubility are synthesized through a solid- state reaction (SSR) at 2173 K with stable alloy and nitride as the starting materials. The Ca1.83-1.5xSi8.34Al3.66OxN16-x : xEu phosphors have intensive orange emissions, whose peaks are located at approximately 585-600 nm, and the emission wavelengths tend to shift toward the red region when the Eu concentrations increase from 0.5% to 18% (mole percentage). When the Eu concentration is equal to 9%, the phosphors suffer from concentration quenching. The low-temperature photoluminescence properties indicate that Ca1.83-1.5xSi8.34Al3.66OxN16x : xEu phosphors show excellent thermal quenching. The crystal structures of Ca1.83-1.5xSi8.34Al3.66OxN16x : xEu are also investigated, and are found to have nitrogen-rich compositions with saturated calcium cations at the interstitial sites of the α-sialons. In addition, the influencing factors of α-sialons with different compositions on the crystal lattice are discussed in detail.  相似文献   

12.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED.  相似文献   

13.
Eu,Ti co-doped Y2O2S:0.03Ti,0.03Eu phosphors and single Eu or Ti doped Y2O2S phosphors were prepared and their luminescent properties were investigated in detail by photoluminescence (PL) spectra, long afterglow spectra and thermoluminescence spectra measurements. The results showed that Y2O2S:Ti,Eu phosphors possess orange-red afterglow color with afterglow time above 5 h. The reddish afterglow color, which corresponds to a set of linear Eu3+ emissions at low-energy range (540-630 nm), was demonstrated to come from the energy transfer process from yellow Ti afterglow emissions, the proposed energy transfer mechanism may well explain the Eu3+ afterglow emission.  相似文献   

14.
Comparison of luminescence properties between electron-excited and uv-excited yttrium gallium garnet: Tb phosphors is reported. Although the thermoluminescence and phosphorescence in both cases are quite alike once traps are filled, an apparent difference in the behavior of trap filling has been observed. Small addition of V2O3 to these phosphors revealed a unique effect on luminescence properties either with the electron excitation or with the uv excitation.  相似文献   

15.
Eu2+-doped BaSi6N8O phosphors (Ba1−xEuxSi6N8O, 0.005≤x≤0.2) were synthesized by gas-pressure sintering of the powder mixture of BaCO3, Si3N4, and Eu2O3 at 1750 °C under 0.5 MPa N2. The fired powder consists of a major BaSi6N8O phase and a trace amount of impurity phases. The structural result of the BaSi6N8O powder, refined by the Rietveld method, agrees well with that of single crystals. A wide blue luminescence band peaking at about 500 nm is observed in BaSi6N8O:Eu2+, upon excitation with the ultraviolet light of 310 nm. Although Eu is covalently bonded to six nearest neighbor nitrogen atoms, the luminescence of Eu2+ is not significantly redshifted but shows a very narrow excitation spectrum at high energies. The origin of the short-wavelength luminescence is mainly ascribed to a small crystal-field splitting as a result of extremely long distances between europium and nitrogen ligands in BaSi6N8O:Eu2+.  相似文献   

16.
红色LiMBO3 : Re3+(Re=Eu,Sm) 发光材料的特性   总被引:2,自引:1,他引:1       下载免费PDF全文
采用固相法制备了红色LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca, Sr, Ba)BO3 : Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca, Sr, Ba)BO3 : Sm3+材料也呈多峰发射,分别对应Sm3+4G5/26H5/24G5/26H7/24G5/26H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)材料的发射强度。  相似文献   

17.
This paper reports the preparation of long persistent Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors and the comparison of their photoluminescent properties. The silicate phosphors prepared by solid-state reaction routine showed a broad blue emission peaking at 484 nm when activated by UV illumination. Such a bluish-green emission can be attributed to the intrinsic 4f-5d transitions of Eu2+. After the UV source was switched off, long persistent phosphorescence could be observed by naked eyes for both samples in darkness. Afterglow measurements revealed that Eu/Dy codoped phosphor possesses better afterglow properties than the Eu single doped one, since the maximum lifetime (τmax=99 s) of the photons calculated from the decay profile is much larger than that of the Eu single doped phosphor (τmax=82 s). TSL results suggested that the difference in afterglow properties was caused by the difference in the electron traps within the crystal lattice. For Eu/Dy codoped phosphor, the doping of Dy ions produced electron traps with trap depth of 0.52 eV, which is suitable and therefore leads to good persistence. However, in the case of Eu single doped phosphor, the trap depth is 0.88 eV, which is really too deep an energy barrier to overcome, and therefore a poor persistence was observed in the experiment.  相似文献   

18.
A series of Dy3+-doped calcium magnesium silicate phosphors: CaMgSi2O6:Dy3+, Ca2MgSi2O7:Dy3+, and Ca3MgSi2O8:Dy3+ with white long-lasting afterglow were prepared and investigated. The characteristic intra-configurational 4f emissions of Dy3+ were observed in the emission spectra as well as the afterglow spectra under ultraviolet excitation. The combination of the 480 nm blue emission corresponding to the 4F9/26H15/2 transition and the 575 nm yellow emission corresponding to the 4F9/26H13/2 transition yielded white-light emission. The white-coloured afterglow emission can last more than 1 h for most of the samples under study. The concentration dependence of the ratio of the yellow emission intensity with blue emission intensity was also examined and found to be varied for the different hosts. The thermoluminescence spectra above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence.  相似文献   

19.
A versatile new facility to study photoionization processes in impurity doped compounds is presented. In this new facility monochromatic light is coupled to a thermoluminescence reader, enabling a fully automated recording of glow curves as a function of photon excitation wavelength. It provides detailed information on the mechanism of trap filling preceding persistent luminescence. The technique is first demonstrated with a study on Lu2SiO5:Ce3+ and then applied to commercial modern day double lanthanide doped SrAl2O4:Eu2+,Dy3+, Sr4Al14O25:Eu2+,Dy3+, CaAl2O4:Eu2+,Nd3+; and to the classical ZnS:Cu+ persistent luminescence phosphors. The presented data provide new insight into the mechanism of persistent luminescence.  相似文献   

20.
We have synthesized Ca 2 Si 5 N 8:Eu 2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties.Our Rietveld refinement of the crystal structure of Ca 1.9 Eu 0.1 Si 5 N 8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions.Between 10 K and 300 K,Ca 2 Si 5 N 8:Eu 2+ phosphor shows a broad red emission band centred at ~1.97 eV-2.01 eV.The gravity centre of the excitation band is located at 3.0 eV-3.31 eV.The centroid shift of the 5d levels of Eu 2+ is determined to be ~1.17 eV,and the red-shift of the lowest absorption band to be ~ 0.54 eV due to the crystal field splitting.We have analysed the temperature dependence of PL by using a configuration coordinate model.The Huang-Rhys parameter S=6.0,the phonon energy ν=52 meV,and the Stokes shift S=0.57 eV are obtained.The emission intensity maximum occurring at ~200 K can be explained by a trapping effect.Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200 K due to the non-radiative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号