首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
罗振东  李宏  陈静 《中国科学:数学》2012,42(12):1263-1280
利用特征投影分解(proper orthogonal decomposition, 简记为POD) 方法对非饱和土壤水流问题的经典有限体积元格式做降阶处理, 建立一种具有足够高精度维数较低的降阶有限体积元格式, 并给出这种降阶有限体积元解的误差估计和外推算法的实现, 最后用数值例子说明数值结果与理论结果是相吻合的. 进一步表明了基于POD 方法的降阶有限体积元格式对求解非饱和土壤水流问题数值解是可靠和有效的.  相似文献   

2.
A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced-order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.  相似文献   

3.
A proper orthogonal decomposition (POD) method is applied to a usual finite volume element (FVE) formulation for parabolic equations such that it is reduced to a POD FVE formulation with lower dimensions and high enough accuracy. The error estimates between the reduced POD FVE solution and the usual FVE solution are analyzed. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is also shown that the reduced POD FVE formulation based on POD method is both feasible and highly efficient.  相似文献   

4.
李宏  孙萍  尚月强  罗振东 《计算数学》2012,34(4):413-424
本文利用有限体积元方法研究二维粘弹性方程, 给出一种时间二阶精度的全离散化有限体积元格式, 并给出这种全离散化有限体积元解的误差估计, 最后用数值例子验证数值结果与理论结果是相吻合的. 通过与有限元方法和有限差分方法相比较, 进一步说明了全离散化有限体积元格式是求解二维粘弹性方程数值解的最有效方法之一.  相似文献   

5.
A proper orthogonal decomposition (POD) method was successfully used in the reduced-order modeling of complex systems. In this paper, we extend the applications of POD method, namely, apply POD method to a classical finite element (FE) formulation for second-order hyperbolic equations with real practical applied background, establish a reduced FE formulation with lower dimensions and high enough accuracy, and provide the error estimates between the reduced FE solutions and the classical FE solutions and the implementation of algorithm for solving reduced FE formulation so as to provide scientific theoretic basis for service applications. Some numerical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced FE formulation based on POD method is feasible and efficient for solving FE formulation for second-order hyperbolic equations.  相似文献   

6.
The non-stationary conduction–convection problem including the velocity vector field and the pressure field as well as the temperature field is studied with a finite volume element (FVE) method. A fully discrete FVE formulation and the error estimates between the fully discrete FVE solutions and the accuracy solution are provided. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the FVE method is feasible and efficient for finding the numerical solutions of the non-stationary conduction–convection problem and is one of the most effective numerical methods by comparing the results of the numerical simulations of the FVE formulation with those of the numerical simulations of the finite element method and the finite difference scheme for the non-stationary conduction–convection problem.  相似文献   

7.
A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for two-dimensional solute transport problems with real practical applied background such that it is reduced into a reduced FE formulation with lower dimensions and high enough accuracy. The error estimates between the reduced POD FE solutions and the usual FE solutions are provided. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD FE method.  相似文献   

8.
A proper orthogonal decomposition (POD) method is applied to a usual finite element scheme for two-dimensional solute transport problems such that it is reduced into a reduced finite element formulation with lower dimensions and high enough accuracy. Numerical examples show that the results of numerical computations are consistent with accurate solutions. Moreover, this validates the feasibility and efficiency of POD method.  相似文献   

9.
刘群  孙萍  罗振东 《计算数学》2012,34(1):57-67
本文导出二维的土壤溶质输运方程的有限体积元格式, 并分析其误差.通过数值例子说明, 有限体积元格式比有限元格式稳定.  相似文献   

10.
In this study, a classical spectral-finite difference scheme (SFDS) for the three-dimensional (3D) parabolic equation is reduced by using proper orthogonal decomposition (POD) and singular value decomposition (SVD). First, the 3D parabolic equation is discretized in spatial variables by using spectral collocation method and the discrete scheme is transformed into matrix formulation by tensor product. Second, the classical SFDS is obtained by difference discretization in time-direction. The ensemble of data are comprised with the first few transient solutions of the classical SFDS for the 3D parabolic equation and the POD bases of ensemble of data are generated by using POD technique and SVD. The unknown quantities of the classical SFDS are replaced with the linear combination of POD bases and a reducedorder extrapolation SFDS with lower dimensions and sufficiently high accuracy for the 3D parabolic equation is established. Third, the error estimates between the classical SFDS solutions and the reduced-order extrapolation SFDS solutions and the implementation for solving the reduced-order extrapolation SFDS are provided. Finally, a numerical example shows that the errors of numerical computations are consistent with the theoretical results. Moreover, it is shown that the reduced-order extrapolation SFDS is effective and feasible to find the numerical solutions for the 3D parabolic equation.  相似文献   

11.
In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.  相似文献   

12.
In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second-order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.  相似文献   

13.
A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method. This work was supported by National Natural Science Foundation of China (Grant Nos. 10871022, 10771065, and 60573158) and Natural Science Foundation of Hebei Province (Grant No. A2007001027)  相似文献   

14.
In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between the reduced MFE solutions based on POD and usual MFE solutions are derived. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced MFE formulation based on POD is feasible and efficient in finding numerical solutions for the non-stationary conduction-convection problems.  相似文献   

15.
16.
We reduce a viscoelastic finite-strain continuum model to a two-dimensional membrane-plate. The reduction is based on assumed kinematics, analytical integration through the thickness and physically motivated simplifications. The resulting formulation is observer-invariant and accounts for thickness stretch and finite rotations.The membrane energy is a quadratic, uniformly Legendre-Hadamard elliptic, first order energy in contrast to classical membrane models and the corresponding system of balance equations remains of second order. An evolution equation for some independent rotation is appended (already in the bulk-model) introducing viscoelastic transverse shear resistance. It can be shown that this reduced membrane formulation is locally well-posed. Use is made of a dimensionally reduced version of an extended Korns first inequality.  相似文献   

17.
In order to reduce the order of the coefficient vectors of the solutions for the classical Crank–Nicolson collocation spectral (CNCS) method of two-dimensional (2D) viscoelastic wave equations via proper orthogonal decomposition, we first establish a reduced-order extrapolated CNCS (ROECNCS) method of the 2D viscoelastic wave equations so that the ROECNCS method has the same basis functions as the classical CNCS method and maintains all advantages of the classical CNCS method. Then, by means of matrix analysis, we discuss the existence, stability, and convergence for the ROECNCS solutions so that the theory analysis becomes very concise. Finally, we utilize some numerical experiments to validate that the consequences of numerical computations are accordant with the theoretical analysis such that the effectiveness and viability of the ROECNCS method are further verified. Therefore, both theory and method of this paper are new and totally different from the existing reduced-order methods.  相似文献   

18.
A numerical solution method for two-dimensional electromagnetic field problems is presented using the B-spline finite-element expression based on polar coordinates. The technique has two main advantages: (1) to avoid the truncation errors at some curved boundaries and (2) to improve the accuracy of singular boundary-value problems with a sharp corner. The B-spline finite-element formulation in polar coordinates is derived and its numerical applications are illustrated by an eddy current problem and several waveguide eigenvalue problems.  相似文献   

19.
将特征正交分解(proper orthogonal decomposition, 简记为POD) 方法应用于抛物型方程通常的时间二阶精度Crank-Nicolson (简记为CN) 有限元格式, 简化其为一个自由度极少的时间二阶精度CN 有限元降维格式, 并给出简化的时间二阶精度CN 有限元解的误差分析. 数值例子表明在简化的时间二阶精度CN 有限元解和通常的时间二阶精度CN 有限元解之间的误差足够小的情况下, 简化的时间二阶精度CN 有限元格式能大大地节省自由度, 而且时间步长可以比时间一阶精度的格式取大10 倍, 以至能更快计算到所要时刻数值解, 减少计算机计算过程的截断误差, 提高计算速度和计算精度,从而验证降维时间二阶精度CN 有限元格式用于解类似于抛物型方程的时间依赖方程是很有效的.  相似文献   

20.
This contribution summarizes a new finite volume element (FVE) method as a unified scheme for coupled sedimentation-flow problems in secondary settling tanks in wastewater treatment. The model is two-dimensional in an axisymmetric setting. A new numerical example is presented. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号