首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low dislocation density of 107–8 cm−2 in GaN thin films on 6H-SiC(0001) substrates grown by metalorganic chemical vapor deposition was achieved. By considering possible origins of dislocations in the GaN/AlN/Sic structure, two major dislocation reduction routes are proposed; ultra-thin AlN buffer layers and smooth AlN surfaces in an atomic scale. Experimentally, the effects of the surface roughness and structural perfection of the AlN buffer layer on GaN film quality were extensively investigated as a function of AlN film thickness. The reduced dislocation density was realized by using ultra-thin AlN buffer layers having a thickness of 1.5 nm, which is below the critical value for misfit dislocation generation. The smoother surface morphology and enhanced structural quality of ultra-thin AlN buffer layers were found to be the main parameters in reducing the defect density in the GaN film.  相似文献   

2.
In this study we report the potential and limitations of the cathodoluminescence dark spot (DS) counting as a method for the determination of dislocation density and distribution in GaN, produced by the hydride vapour phase epitaxy (HVPE). Different GaN sample series (s.i. GaN:Fe and n-type GaN:Si) were used, in order to study the dependence of the results of the DS-counting on the dopant type and concentration. By the direct comparison of these results to classical defect selective etching, the DS-measurements were validated. It could be shown that each of the both methods have their particular restrictions, which must be considered in their application.  相似文献   

3.
The InGaN/GaN blue light emitting diodes (LED) structures have been grown on sapphire substrates with a hexagonal array of hemispherical patterns by low‐pressure metalorganic chemical vapor deposition. Vertical LED structures on Cu carriers are fabricated using electroplating and KrF laser lift‐off techniques. After removal of the patterned sapphire substrate, an inductively coupled plasma etching is carried out to expose the n‐GaN layer for n‐metal contact. It is observed that GaN columns are formed at the center of the concave hemispheres after dry etching processes. Cathodoluminescence and wet chemical etching investigations reveal that a high density of dislocations is found to be generated at these specific positions. The possible mechanism for these observations is attributed to the defect distribution and defect‐dependent selective etching of the GaN.  相似文献   

4.
GaN nanowires (NWs) were grown on GaN(0001) coated sapphire substrate with Ni/Au catalyst by using metalorganic chemical vapor deposition. Nucleation conditions were investigated for improving the growth orientation of NWs. With decreasing catalyst thickness from 5nm/5nm to 2nm/2nm, the NW orientation was improved and the NW morphology was changed from taper to cylindrical, due to the varying of growth mode. Vertical alignment of NWs can be further improved by inserting an additional high‐temperature (850 ℃) nucleation step with an optimum V/III flow ratio of 20.  相似文献   

5.
Vertically well‐aligned zinc oxide nanowires (NWs) with high density were successfully synthesized on Si, sapphire and GaN/sapphire substrates by thermal evaporation of zinc powders without catalysts or additives. The growth behavior of ZnO NWs was strongly dependent on the substrate materials. The effects of the substrate position on the structures and properties of ZnO NWs were primarily discussed. The morphology and crystallinity of the resultant NWs were studied by scanning electron microscope, transmission electronic microscope and X‐ray diffraction. The photoluminescence (PL) characteristics of the ZnO NWs on the different substrates were studied. The results showed that the as‐grown ZnO NWs exhibit a sharp and strong ultraviolet emission at 3.27 eV and a very weak green emission at around 2.48 eV, indicating that the a‐synthesized NWs have excellent PL properties with good crystalline quality and can be an ideal candidate for making luminescent devices. By comparison of PL spectra, we revealed that the green‐to‐UV emission intensity ratios were considerably dependent on the substrate materials, which was explained by the difference in the structural morphology of the produced nanowires.  相似文献   

6.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

7.
GaN thin films have been grown on Si(1 1 1) substrates using an atomic layer deposition (ALD)-grown Al2O3 interlayer. This thin Al2O3 layer reduces strain in the subsequent GaN layer, leading to lower defect densities and improved material quality compared to GaN thin films grown by the same process on bare Si. XRD ω-scans showed a full width at half maximum (FWHM) of 549 arcsec for GaN grown on bare Si and a FWHM as low as 378 arcsec for GaN grown on Si using the ALD-grown Al2O3 interlayer. Raman spectroscopy was used to study the strain in these films in more detail, with the shift of the E2(high) mode showing a clear dependence of strain on Al2O3 interlayer thickness. This dependence of strain on Al2O3 thickness was also observed via the redshift of the near bandedge emission in room temperature photoluminescence (RT-PL) spectroscopy. The reduction in strain results in a significant reduction in both crack density and screw dislocation density compared to similar films grown on bare Si. Screw dislocation density of the films grown on Al2O3/Si substrates approaches that of typical GaN layers on sapphire. This work shows great promise for the use of oxide interlayers for growth of GaN-based LEDs on Si.  相似文献   

8.
本文以氧化镓、氧化锌和氨气为原料,通过常压化学气相沉积法(APCVD)在Au/Si(100)衬底上成功生长出了Zn掺杂的"Z"形GaN纳米线。利用场发射扫描电镜(FESEM)、X-射线衍射仪(XRD)、透射电子显微镜(TEM)、光致发光谱(PL)等测试方法对样品的形貌、晶体结构及光学性质进行了表征。结果表明:在温度为950℃,氧化镓和氧化锌的质量比为8∶1的条件下,制备出的Zn掺杂Z形GaN单晶纳米线直径为70 nm、长度为数十个微米,生长机理遵循VLS机制。Zn元素的掺杂使GaN纳米线在420 nm处出现了光致发光峰,发光性能有所改善。  相似文献   

9.
The threading dislocation density of hydride vapor phase epitaxy (HVPE)-grown thick GaN layers was measured by high-resolution X-ray diffraction (HR-XRD). Three models were compared, namely mosaic model, Kaganer model and modified Kaganer model. X-ray rocking curves (XRC) of (0 0 0 2), (1 0 1¯ 5), (1 0 1¯ 4), (1 0 1¯ 3), (1 0 1¯ 2), (1 0 1¯ 1) and (1 0 1¯ 0) planes were recorded for quantitative analysis. The screw-, edge-, and mixed-type threading dislocation densities were simulated from the XRD line profile by using the three models. The dislocation density was also measured by atomic force microscopy (AFM), wet chemical etching and cathodoluminescence (CL). The results showed that the Kaganer model was more physically precise and well explained the rocking curve broadening for HVPE-grown high-quality GaN compared with the mosaic model. Assuming a randomly distributed threading dislocation configuration, we modified the Kaganer model. Based on the modified Kaganer model, the edge and screw threading dislocation densities in HVPE-grown GaN thick films ranging from 20 μm up to 700 μm were analyzed. It was shown that screw-type dislocation density decreased more rapidly than edge-type dislocation with increase in film thickness.  相似文献   

10.
This work presents an experimental study on the identification and quantification of different types of dislocations in GaN grown by low-pressure solution growth. A reliable defect selective etching procedure in a NaOH-KOH melt is developed and validated using transmission electron microscopy that permits to define groups of etch pits that belong each to dislocations with a specific Burgers vector. This way a comparably fast method is provided for determining the total, the specific dislocation densities and the type of dislocation in a statistically representative way. The results for the solution grown samples are compared to those obtained for MOCVD GaN.  相似文献   

11.
Undoped and Zn-doped GaN nanowires were synthesized by chemical vapor deposition (CVD), and the effects of substrates, catalysts and precursors were studied. A high density of GaN nanowires was obtained. The diameter of GaN nanowires ranged from 20 nm to several hundreds of nm, and their length was about several tens of μm. The growth mechanism of GaN nanowires was discussed using a vapor–liquid–solid (VLS) model. Furthermore, room-temperature cathodoluminescence spectra of undoped and Zn-doped GaN nanowires showed emission peaks at 364 and 420 nm, respectively.  相似文献   

12.
The present study focused on the effect of an intermediate-temperature (IT; ∼900 °C) buffer layer on GaN films, grown on an AlN/sapphire template by hydride vapor phase epitaxy (HVPE). In this paper, the surface morphology, structural quality, residual strain, and luminescence properties are discussed in terms of the effect of the buffer layer. The GaN film with an IT-buffer revealed a relatively lower screw-dislocation density (3.29×107 cm−2) and a higher edge-dislocation density (8.157×109 cm−2) than the GaN film without an IT-buffer. Moreover, the IT-buffer reduced the residual strain and improved the luminescence. We found that the IT-buffer played an important role in the reduction of residual strain and screw-dislocation density in the overgrown layer through the generation of edge-type dislocations and the spontaneous treatment of the threading dislocation by interrupting the growth and increasing the temperature.  相似文献   

13.
Epitaxial growth on GaN bulk single crystal substrates sets new standards in GaN material quality. The outstanding properties provide insights into fundamental material parameters (e.g. lattice constants, exciton binding energies, etc.) with a precision not obtainable from heteroepitaxial growth on sapphire or SiC. With metalorganic vapor phase epitaxy (MOVPE) we realized unstrained GaN layers with dislocation densities about six orders of magnitude lower than in heteroepitaxy. By the use of dry etching techniques for surface preparation, an important improvement of crystal quality is achieved. Those layers reveal an exceptional optical quality as determined by a reduction of the low-temperature photoluminescence (PL) linewidth from 5 meV to 0.1 meV and a reduced X-ray diffraction (XRD) rocking curve width from 400 to 20 arcsec. As a consequence of the narrow PL linewidths, new features as, e. g. a fivefold fine structure of the donor-bound exciton line at 3.471 eV was detected. Additionally, all three free excitons as well as their excited states are visible in PL at 2 K.

Dry etching techniques for surface preparation allow morphologies of the layers suitable for device applications. We report on InGaN/GaN multi-quantum-well (MQW)_ structures as well as GaN pn- and InGaN/GaN double heterostructure light emitting diodes (LEDs) on GaN bulk single crystal substrates. Those LEDs are twice as bright as their counterparts grown on sapphire. In addition they reveal an improved high power characteristics, which is attributed to an enhanced crystal quality and an increased p-doping.  相似文献   


14.
The crystal quality of GaN thin film on silicon using GaN/AlN superlattice structures was investigated. The growth was carried out on Si(111) for GaN(0001) in a metal‐organic vapor phase epitaxy system. Various GaN/AlN superlattice intermediate layers have been designed to decrease the dislocation density. The results showed that the etch pit density could be greatly reduced by one order of magnitude. Cross‐sectional transmission electron microscopy (XTEM) study confirmed the efficiency of GaN/AlN superlattice in blocking threading dislocation propagation in GaN crystal. The design of nine period GaN/AlN (20nm/2nm) superlattice has been evidenced to be effective in reducing the dislocation density and improving the crystal quality. In addition, the dislocation bending in GaN/AlN interface and dislocation merging is investigated. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
《Journal of Non》2006,352(23-25):2332-2334
In this work we report on the growth and characterization of high quality MOCVD GaN film grown on Al2O3 substrates by using a HT (>1150 °C)-AlN buffer layer. We have investigated the most favorable growth conditions in terms of temperature, thickness and growth rate of AlN buffer layer in order to optimize the high temperature GaN layer. The improved morphological and structural properties of GaN layer were verified by AFM and XRD measurements. The optimized GaN layer presents a smooth surface with a rms value of 1.4 Å. The full width at half maximum (FWHM) for 800 nm thick GaN films is 144″. Furthermore PL measurements and CV analysis confirm that in GaN layer grown on HT-AlN buffer layer defect density is drastically reduced.  相似文献   

16.
The characteristics of confined epitaxial growth are investigated with the goal of determining the contributing effects of mask attributes (spacing, feature size) and growth conditions (V/III ratio, pressure, temperature) on the efficiency of the approach for dislocation density reduction of GaN. In addition to standard (secondary electron and atomic force) microscopy, electron channeling contrast imaging (ECCI) is employed to identify extended defects over large (tens of microns) areas. Using this method, it is illustrated that by confining the epitaxial growth, high quality GaN can be grown with dislocation densities approaching zero.  相似文献   

17.
We have discovered a mechanism which can significantly reduce the dislocation density during the growth of GaN single crystals in the Na flux method. The significant reduction of the dislocation density occurs in the later stage of LPE growth, rather than solely at the seed-LPE interface for which we have already reported evidence indicating the presence of bundling dislocations. The two-step dislocation reduction is the key in achieving extremely low dislocation density using this method.  相似文献   

18.
The new developed maskless lateral-epitaxial-overgrowth technique, in which the striped substrates are patterned by wet chemical etching, is systematically investigated using scanning electron microscopy, X-ray diffraction, and atomic force microscopy (AFM). Wing tilt is measured for the GaN films on patterned substrates with a range of “fill factor” (ratio of groove width to stripe period) and for the GaN in different growth time. It is found that changes in these parameters have a significant effect on the extent and distribution of wing tilt in the laterally overgrown regions relative to the GaN directly on the sapphire substrate. Increasing the thickness of GaN films is benefit to reduce wing tilt. The tilt is avoided in the GaN films with 4.5 μm thickness and fill factor for 0.46. The full-width at half-maximum of X-ray rocking curves of the asymmetric diffraction peaks and the image of AFM both show that the threading dislocations in the developed lateral epitaxial overgrowth of GaN films are reduced sharply. The GaN template could be used as an excellent substrate to fabricate high-performance optoelectronic devices.  相似文献   

19.
《Journal of Crystal Growth》2007,298(2):113-120
Dislocation-free and strain-free GaN nanopillars, grown on Si by molecular beam epitaxy, were used as nanoseeds for a new form of epitaxial lateral overgrowth (ELO) by metalorganic vapour phase epitaxy (MOVPE) until full coalescence. Such overgrown GaN films are almost relaxed and were used as templates for producing thick GaN layers by halide vapour phase epitaxy (HVPE). The final GaN film is easily separated from the starting Si substrate. This is henceforth a new technology to produce freestanding GaN. The GaN crystal quality was assessed by transmission electron microscopy (TEM), photo- and cathodoluminescence (PL, CL). It was seen that the pillar-ELO is produced from a limited number of nanopillars. Some dislocations and basal stacking faults are formed during the coalescence. However, those that propagate parallel to the substrate do not replicate in the top layer and it is expected that the thickened material present a reduced defect density.  相似文献   

20.
This work assesses the relative effectiveness of four techniques to reduce the defect density in heteroepitaxial nonpolar a-plane GaN films grown on r-plane sapphire by metalorganic vapour phase epitaxy (MOVPE). The defect reduction techniques studied were: 3D–2D growth, SiNx interlayers, ScN interlayers and epitaxial lateral overgrowth (ELOG). Plan-view transmission electron microscopy (TEM) showed that the GaN layer grown in a 2D fashion had a dislocation and basal-plane stacking fault (BSF) density of (1.9±0.2)×1011 cm−2 and (1.1±0.9)×106 cm−1, respectively. The dislocation and BSF densities were reduced by all methods compared to this 2D-grown layer (used as a seed layer for the interlayer and ELOG methods). The greatest reduction was achieved in the (0 0 0 1) wing of the ELOG sample, where the dislocation density was <1×106 cm−2 and BSF density was (2.0±0.7)×104 cm−1. Of the in-situ techniques, SiNx interlayers were most effective: the interlayer with the highest surface coverage that was studied reduced the BSF density to (4.0±0.2)×105 cm−1 and the dislocation density was lowered by over two orders of magnitude to (3.5±0.2)×108 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号