共查询到17条相似文献,搜索用时 99 毫秒
1.
以三聚氰胺和六水合氯化钴为原料,一锅法制备Co_3O_4负载的多孔石墨相氮化碳(Co_3O_4/g-C_3N_4)复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等手段对其结构和光学特性进行表征。以盐酸四环素(TC)为目标污染物,评价了不同负载量Co_3O_4/g-C_3N_4复合光催化剂的可见光催化性能。结果表明,所制备的Co_3O_4/g-C_3N_4复合光催化剂为多孔结构,其比表面积较大,并在可见光区域具有显著的吸收。利用原位生成的Co_3O_4纳米粒子在氮化碳表面形成异质结构,可有效转移光生载流子,降低光生电子-空穴的再结合率,从而提高光催化活性。并且存在最佳Co_3O_4复合量,当六水合氯化钴加入量为三聚氰胺的8%(w/w)时,所制备的复合光催化剂CoCN-8具有最佳的光催化性能。在可见光的照射下,60 min内可降解85%的TC,而同样条件下,纯g-C_3N_4仅降解23%的TC。 相似文献
2.
通过半封闭一步热裂解法和改进的Hummers法分别制备了类石墨氮化碳(C3N4)和氧化石墨烯(GO),再利用光还原方法制得还原氧化石墨烯/氮化碳(RGO/C3N4)复合材料。采用X射线衍射(XRD),场发射扫描电镜(FESEM),X射线光电子能谱(XPS),紫外-可见漫反射吸收光谱(DRS),光致荧光(PL)和傅里叶变换红外光谱(FTIR)等测试技术对复合材料进行表征。以罗丹明B(RhB)为探针分子在可见光下考察RGO/C3N4复合材料的光催化活性,结果表明:RGO的引入显著提高了C3N4的光催化活性,且6.0%RGO/C3N4复合物的光催化活性最高,可能的原因是RGO具有优良的传导和接受电子性能,抑制了C3N4光生电子-空穴的复合机率,进而提高了光催化活性。 相似文献
3.
针对氮化碳(C3N4)光生电荷易复合、光催化性能有限的不足,我们制备N和F共掺杂C3N4(NF-C3N4),以提升其光催化性能。利用NH4F在高温下原位分解产生的HF和NH3,对C3N4刻蚀的同时实现N和F双元素共掺杂。以氯化铵(NH4Cl)为对照,制备N掺杂C3N4(N-C3N4)。利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线光电子能谱(XPS)、X射线衍射(XRD)、比表面积测试和电化学表征手段研究N、F共掺杂对C3N4形貌、成分、结构和物化性质等的影响规律。相比于C3N4和N-C3N4,NF-C3N4呈多孔状,比表面积增大,光生电荷的生成、分离和转移均被促进,NF-C3N4光催化还原Cr (Ⅵ)的速率是C3N4的2.6倍、N-C3N4的1.7倍。进一步考察了不同前驱体(尿素、双氰胺和三聚氰胺)对制备C3N4的影响,发现以尿素为前驱体的C3N4与NH4F的质量比为3∶2时,NF-C3N4呈现最佳的光催化性能。催化剂用量、光照强度、空穴捕获剂浓度的增加和pH的降低均能提高Cr (Ⅵ)还原速率。在NF-C3N4浓度为0.1 g·L-1、pH=3、cEDTA-2Na=2 mmol·L-1、40 min可见光照射后,Cr (Ⅵ)去除率达到90%。5次循环实验表明,优化制备的NF-C3N4光催化还原Cr (Ⅵ)的性能保持良好,具有较高的稳定性。 相似文献
4.
通过沉积法和离子交换法成功地制备了Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化剂。利用X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸附-脱附等温线、紫外-可见漫反射光谱、荧光光谱等手段对样品进行了表征。通过降解罗丹明B考察其可见光催化活性及稳定性,研究了硫化钠与磷酸银物质的量的比值(n_(Na_2S)/n_(Ag_3PO_4))、g-C_3N_4添加量对所制备复合光催化材料性能的影响,同时对光催化机理进行了探讨。结果表明,随着n_(Na2S)/n_(Ag3PO4)的增加,所得复合催化材料活性先增加后降低;当n_(Na2S)/n_(Ag_3PO_4)为1.5%、g-C_3N_4与Ag_3PO_4的质量比为3∶7时制备的催化剂ASC1.5的光催化活性最好,在可见光照射下,40 min内可将罗丹明B完全降解,且5次循环使用后仍保持较高的催化活性。和Ag_3PO_4相比,Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化材料的活性与稳定性都得到明显提高,这主要归因于复合催化剂比表面积和孔结构的增加,载流子分离效率的提高。光催化机理研究表明,空穴(h~+)、超氧阴离子自由基(·O~(2-))和羟基自由基(·OH)都是光催化过程中的主要活性物种。三者作用大小依次为:h~+·O~(2-)·OH。 相似文献
5.
以三聚氰胺和碳酸氢铵混合物为原料,采用简便热解法制备g-C_3N_4纳米管。热解过程中碳酸氢铵分解释放出大量的NH3,能够诱导纳米管的形成。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)、N_2吸附-脱附、紫外-可见漫反射光谱以及紫外可见光谱(UV)等分析测试方法对该光催化剂的微观形貌结构和催化性能进行了表征。以罗丹明光催化降解为模型反应研究了g-C_3N_4纳米管的光催化活性。g-C_3N_4纳米管的表面积明显增大,且能够有效地促进光生电子转移,在可见光下具有较强的光催化性能,降解率在60和120 min时分别能达到95%和99.4%,且循环重复利用5次后降解率不低于92%。 相似文献
6.
以三聚氰胺和碳酸氢铵混合物为原料,采用简便热解法制备g-C3N4纳米管。热解过程中碳酸氢铵分解释放出大量的NH3,能够诱导纳米管的形成。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)、N2吸附-脱附、紫外-可见漫反射光谱以及紫外可见光谱(UV)等分析测试方法对该光催化剂的微观形貌结构和催化性能进行了表征。以罗丹明光催化降解为模型反应研究了g-C3N4纳米管的光催化活性。g-C3N4纳米管的表面积明显增大,且能够有效地促进光生电子转移,在可见光下具有较强的光催化性能,降解率在60和120 min时分别能达到95%和99.4%,且循环重复利用5次后降解率不低于92%。 相似文献
7.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS2,将其与石墨相氮化碳(g-C3N4)复合,制得MoS2/g-C3N4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS2/g-C3N4复合材料光催化降解罗丹明B(RhB)的活性,结果表明:将少量MoS2与g-C3N4复合可明显提高光催化活性,且1%(w/w)MoS2/g-C3N4复合物的光催化活性最高,可能的原因是MoS2和g-C3N4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。 相似文献
8.
利用g-C3N4纳米片表面的氨基与膜基底材料氯甲基化聚醚砜(CMPES)的苄氯基团发生化学交联反应,再通过相转化法制备出g-C3N4/CMPES复合膜。系统研究了g-C3N4纳米片的添加对复合膜的结构、形貌及过滤、光催化、抗污染性能的影响,并探讨其光催化降解牛血清白蛋白溶液(BSA)的机理。研究结果表明:g-C3N4纳米片与膜基底材料通过化学键相连接,有效提高了复合膜的光催化性能和稳定性。由于g-C3N4纳米片的亲水性和光催化作用,使复合膜表现出优异的过滤性能和抗污染性能。 相似文献
9.
利用原位沉积法将BiOBr纳米片生长到g-C3N4表面,制得g-C3N4-BiOBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由BiOBr和g-C3N4两相组成,BiOBr纳米片在片状g-C3N4表面快速形核生长形成面-面复合结构。相比于纯相g-C3N4和BiOBr,g-C3N4-BiOBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 g-C3N4-BiOBr复合光催化剂光催化活性分别是纯相g-C3N4和BiOBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。 相似文献
10.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。 相似文献
11.
研究了在光照下,乙二胺四乙酸(EDTA)的添加促进石墨相氮化碳(g-C3N4)光催化降解甲基橙(MO).研究了H+和羧酸根负离子对光降解MO的影响.紫外-可见漫反射光谱(DRS)研究表明,EDTA的加入并没有改变g-C3N4的电子结构和光电特性.EDTA的加入捕获了空穴(h+),促进了光生e-/h+对的分离,从而使光降解活性提高.证明了·O2-是光催化降解过程中的主要活性物种.基于上述研究结果,我们提出了一种可能的EDTA促进g-C3N4光催化降解MO的机理.这些结果为提高g-C3N4光催化降解水体中有机污染物的性能提供了一种新方法. 相似文献
12.
RGO/C_3N_4复合材料的制备及可见光催化性能 总被引:1,自引:0,他引:1
通过半封闭一步热裂解法和改进的Hummers法分别制备了类石墨氮化碳(C3N4)和氧化石墨烯(GO),再利用光还原方法制得还原氧化石墨烯/氮化碳(RGO/C3N4)复合材料。采用X射线衍射(XRD),场发射扫描电镜(FESEM),X射线光电子能谱(XPS),紫外-可见漫反射吸收光谱(DRS),光致荧光(PL)和傅里叶变换红外光谱(FTIR)等测试技术对复合材料进行表征。以罗丹明B(RhB)为探针分子在可见光下考察RGO/C3N4复合材料的光催化活性,结果表明:RGO的引入显著提高了C3N4的光催化活性,且6.0%RGO/C3N4复合物的光催化活性最高,可能的原因是RGO具有优良的接受和传导电子性能,抑制了C3N4光生电子-空穴的复合机率,进而提高了光催化活性。 相似文献
13.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。 相似文献
14.
15.
用化学沉淀法制备中空管状g-C3N4/Ag3PO4复合催化剂。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)和荧光光谱对其结构、形貌和光学性能进行了表征。结果表明:Ag3PO4纳米颗粒均匀地分散在中空管状g-C3N4表面,两者紧密结合形成异质结。研究复合催化剂在可见光照射下降解盐酸四环素(TC)的光催化活性。结果显示:复合催化剂在80 min内对TC的降解率为98%,其降解反应速率常数是纯相Ag3PO4的3倍。经过5次循环实验后复合催化剂对于TC的降解率仍保持87%,具有优良的循环稳定性。捕获实验表明空穴(h+)和超氧负离子(·O-2)是光催化反应过程中的主要活性物种。根据能带理论,提出了复合催化剂异质结的Z型光催化机理。 相似文献
16.
为了进一步提高聚合物半导体类石墨相氮化碳(g-C3N4)降解有机物的活性,通过简单的水热法复合得到碳化MoS2/掺硫g-C3N4异质结(MoSC/S-CN),并在可见光下研究其罗丹明B (RhB)的降解性能。结果表明,相较于纯g-C3N4,最优化的MoSC/S-CN样品对可见光的吸收范围得到明显拓宽,并且在100 min内对RhB的降解效率为92.5%,比纯g-C3N4性能提高68.83%。一系列的结构和光学性质表明,掺硫后再进一步与碳化MoS2耦合可以协同作用于g-C3N4,改善g-C3N4的能带结构,加速光生电子空穴对的分离,有效提高光催化活性。 相似文献
17.
采用低温热解法合成出g-C3N4和In2O3:Sn(ITO)催化剂粉体,通过静电引力作用将少量ITO纳米粉体分散在g-C3N4粉体颗粒表面制成ITO/g-C3N4异质结光催化剂。在可见光模拟系统中以乙醇为牺牲剂,检测氢气生成速率表征催化剂的光催化性能, 并借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见光漫反射吸收光谱(UV-Vis)等对催化剂粉体进行了表征。实验结果表明, ITO附着在g-C3N4颗粒表面有利于光生电子的转移和光解水析氢反应。ITO/g-C3N4催化剂较之纯g-C3N4催化剂活性显著提高。当ITO附着量为4%时,析氢速率可稳定在350 μmol·g-1·h-1。 相似文献