首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reported in this work are phase equilibrium data at high pressures for the binary and ternary systems formed by {propane + N,N-dimethylformamide (DMF) + methanol}. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method for obtaining the experimental bubble and dew points transition data over the temperature range of (363 to 393) K, pressures up to 11.5 MPa and overall mole fraction of the lighter component varying from 0.1 to 0.995. For the systems investigated, vapour–liquid (VLE), liquid–liquid (LLE) and vapour–liquid–liquid (VLLE) phase transitions were visually recorded. Results show that the systems investigated present UCST (upper critical solution temperature) phase transition curves with an UCEP (upper critical end point) at a temperature higher than the propane critical temperature. The experimental data were modelled using the Peng–Robinson equation of state with the Wong–Sandler and the classical quadratic mixing rules, affording a satisfactory representation of the experimental data.  相似文献   

2.
The compound oryzanol available in the rice bran (oriza sativa) is well known for its antioxidant activity. Phase equilibrium data involving oryzanol in compressed fluids, hardly found in the literature, are important to provide the basis for the extraction and fractionation processes. In this sense, the aim of this work is to report phase equilibrium measurements for the system (γ-oryzanol + chloroform) in compressed propane. Phase equilibrium experiments were performed using the static synthetic method (cloud points transition data) in a high-pressure variable-volume view cell in the temperature range of 303 K to 353 K, pressures up to 17 MPa, for oryzanol overall mass fractions of 2 wt%, 5 wt% and 10 wt% in (propane + chloroform) mixtures. A complex phase behaviour comprising vapour–liquid, liquid–liquid, vapour–liquid–liquid, solid–liquid, solid–liquid–liquid, solid–liquid–liquid–vapour transitions were visually observed for the system studied.  相似文献   

3.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

4.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

5.
Experimental (vapour + liquid) equilibrium results for the binary systems, (methanol + water) at the local atmospheric pressure of 95.3 kPa and at sub-atmospheric pressures of (15.19, 29.38, 42.66, 56.03, and 67.38) kPa, (water + glycerol) system at pressures (14.19, 29.38, 41.54, 54.72, 63.84, and 95.3) kPa and the (methanol + glycerol) system at pressures (32.02 and 45.3) kPa were obtained over the entire composition range using a Sweitoslwasky-type ebulliometer. The relationship of the liquid composition (x1) as a function of temperature (T) was found to be well represented by the Wilson model. Computed vapour phase mole fractions, activity coefficients and the measured values along with optimum Wilson parameters are presented.  相似文献   

6.
Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.  相似文献   

7.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

8.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

9.
Accurate thermo-physical data are of utmost interest for the development of new efficient refrigeration systems. Carbon dioxide (R744) and 1,1-difluoroethane (R152a) are addressed here. Isothermal (vapor + liquid) equilibrium data are reported herein for (R744 + R152a) binary system in the (258–343) K temperature range and in the (0.14 to 7.65) MPa pressure range. A reliable “static-analytic” method taking advantage of two online ROLSI? micro capillary samplers is used for all thermodynamic measurements. The data are correlated using our in-house ThermoSoft thermodynamic model using the Peng–Robinson equation of state, the Mathias–Copeman alpha function, the Wong–Sandler mixing rules, and the NRTL model.  相似文献   

10.
A complete, critical evaluation of all phase diagrams and thermodynamic data was performed for all condensed phases of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system, and optimized parameters for the thermodynamic solution models were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range order, where the cations (Na+ and K+) were assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andCl-) were assumed to mix on an anionic sublattice. The thermodynamic properties of the solid solutions of (Na,K)2(SO4,CO3) were modelled using the Compound Energy Formalism, and (Na,K)Cl was modelled using a substitutional model in previous studies. Phase transitions in the common-cation ternary systems (NaCl + Na2SO4 + Na2CO3) and (KCl + K2SO4 + K2CO3) were studied experimentally using d.s.c./t.g.a. The experimental results were used as input for evaluating the phase equilibrium in the common-cation ternary systems. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature are reproduced within experimental error limits.  相似文献   

11.
Phase relations in the system (chromium + rhodium + oxygen) at T = 1273 K have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Only one ternary oxide, CrRhO3 with rhombohedral structure (R3¯, a = 0.5031, and c = 1.3767 nm) has been identified. Alloys and the intermetallics along the (chromium + rhodium) binary were in equilibrium with Cr2O3. The thermodynamic properties of the CrRhO3 have been determined in the temperature range (900 to 1300) K by using a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte. For the reaction,1/2Cr2O3(solid)+1/2Rh2O3(solid)CrRhO3(solid),ΔG°±140/(J·mol-1)=-31967+5.418(T/K),where Cr2O3 has the corundum structure and Rh2O3 has the orthorhombic structure. Thermodynamic properties of CrRhO3 at T = 298.15 K have been evaluated. The compound decomposes on heating to a mixture of Cr2O3-rich sesquioxide solid solution, Rh, and O2. The calculated decomposition temperatures are T = 1567 ± 5 K in pure O2 and T = 1470 ± 5 K in air at a total pressure p° = 0.1 MPa. The temperature-composition phase diagrams for the system (chromium + rhodium + oxygen) at different partial pressures of oxygen and an oxygen potential diagram at T = 1273 K are calculated from the thermodynamic information.  相似文献   

12.
This work reports phase equilibrium measurements for the ternary system (palmitic acid + ethanol + CO2). The motivation of this research relies on the fact that palmitic acid is the major compound of several vegetable oils. Besides, equilibrium data for palmitic acid in carbon dioxide using ethanol as co-solvent are scarce in the literature. Phase equilibrium experiments were performed using a high-pressure variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 20 MPa and mole fraction of palmitic acid from 0.0199 to 0.2930. Vapour–liquid and solid–fluid transitions were visually observed for the system studied. The Peng–Robinson equation of state, with the classical van der Waals quadratic mixing rule was employed for thermodynamic modelling of the system investigated with a satisfactory agreement between experimental and calculated values.  相似文献   

13.
An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO2 + 1-propanol), (CO2 + 2-methyl-1-propanol), (CO2 + 3-methyl-1-butanol), and (CO2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.  相似文献   

14.
《Fluid Phase Equilibria》2006,239(1):16-25
In the present paper, a study of temperature behaviour of the liquid–liquid equilibrium in ternary systems N,N-dimethylformamide + 2-methylpentane + methanol and N,N-dimethylformamide + methylcyclohexane + methanol. The analysis of critical curves of the liquid–liquid equilibrium by means of the regular solution model was carried out. The acquired predictions were subsequently verified experimentally.  相似文献   

15.
A critical evaluation of all phase diagram and thermodynamic data were performed for the solid and liquid phases of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andS2-) are assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na, K)2(CO3, SO4, S). The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

16.
Recently, it has been suggested that natural working fluids, such as CO2, hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO2/propane and CO2/isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.  相似文献   

17.
Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.  相似文献   

18.
Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa.The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask.The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems.The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model.  相似文献   

19.
This report presents a new set of values for the solubility of carbon dioxide in the solvent system {water (1) + monoethanolamine (2) + triethanolamine (3)} at T = (313.2, 333.2, 353.2, and 373.2) K and CO2 partial pressures ranging (1.0 to 120) kPa. The results are specific to solvent systems with the following compositions: (i) ω2 = 0.24, ω3 = 0.06, (ii) ω2 = 0.18, ω3 = 0.12, (iii) ω2 = 0.12, ω3 = 0.18, (iv) ω2 = 0.06, ω3 = 0.24, and (v) ω2 = 0, ω3 = 0.30, where ω refers to the mass fraction of the component. The results fit the Deshmukh and Mather model well.  相似文献   

20.
The three-phase equilibrium conditions of ternary (hydrogen + tert-butylamine + water) system were first measured under high-pressure in a “full view” sapphire cell. The tert-butylamine–hydrogen binary hydrate phase transition points were obtained through determining the points of intersection of three phases (H–Lw–V) to two phases (Lw–V) experimentally. Measurements were made using an isochoric method. Firstly, (tetrahydrofuran + hydrogen) binary hydrate phase equilibrium data were determined with this method and compared with the corresponding experimental data reported in the literatures and the acceptable agreements demonstrated the reliability of the experimental method used in this work. The experimental investigation on (tert-butylamine + hydrogen) binary hydrate phase equilibrium was then carried out within the temperature range of (268.4 to 274.7) K and in the pressure range of (9.54 to 29.95) MPa at (0.0556, 0.0886, 0.0975, and 0.13) mole fraction of tert-butylamine. The three-phase equilibrium curve (H + Lw + V) was found to be dependent on the concentration of tert-butylamine solution. Dissociation experimental results showed that tert-butylamine as a hydrate former shifted hydrate stability region to lower pressure and higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号