首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Current Applied Physics》2010,10(6):1372-1377
Thin bismuth oxide films have been prepared by a modified Pechini route on glass substrate and annealed at temperatures ranging between 400 °C and 700 °C using bismuth nitrate as raw material. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), Atomic force microscopy (AFM), scanning electron microscopy (SEM), optical absorption and d.c. two-probe, respectively. Structural investigations indicated that as-prepared bismuth oxide films were polycrystalline and multiphase, and annealing temperatures played a key role in the composition and optical properties of these films. AFM and SEM images revealed well defined particles which are highly influenced by annealing temperatures. The optical studies showed a direct band gap which varied with annealing temperatures between 3.63 eV and 3.74 eV. The electrical measurement showed that the electrical resistivity increased with annealing temperatures and the films were typical semiconductors. As catalyst, bismuth oxide films annealed at 550 °C had the best photocatalytic performance for photodegradation of methyl orange.  相似文献   

2.
Effect of annealing temperature on characteristics of sol–gel driven ZnO thin film spin-coated on Si substrate was studied. The UV–visible transmittance of the sol decreased with the increase of the aging time and drastically reduced after 20 days aging time. Granular shape of ZnO crystallites was observed on the surface of the films annealed at 550, 650, and 750 °C, and the crystallite size increased with the increase of the annealing temperature. Consequently nodular shape of crystallites was formed upon increasing the annealing temperature to 850 °C and above. The current–voltage characteristics of the Schottky diodes fabricated with ZnO thin films with various annealing temperatures were measured and analyzed. It is found that, ZnO films showed the Schottky characteristics up to 750 °C annealing temperature. The Schottky diode characteristics were diminished upon increasing the annealing temperature above 850 °C. XPS analysis suggested that the absence of oxygen atoms in its oxidized state in stoichiometric surrounding, might be responsible for the diminished forward current of the Schottky diode when annealed above 850 °C.  相似文献   

3.
We have studied the optical and structural properties of Eu2O3 thin films grown by RF magnetron sputtering on Si substrates. The films have been annealed in O2 ambient to improve their properties. The intensity of the photoluminescence (PL) signal detected at room temperature from the films depends on the temperature of the thermal process. The structural characterization of the films, performed by transmission electron microscopy, energy filtered transmission electron microscopy and x-ray diffraction, reveals that annealing processes performed at temperatures higher than 900 °C induce a mixing at the Eu2O3–Si interface, leading to the formation of a silicate-like layer, which is responsible for the observed decrease of the PL intensity.  相似文献   

4.
Nd-doped Si-rich silicon oxide thin films were produced by radio frequency magnetron co-sputtering of three confocal cathodes: Si, SiO2, and Nd2O3, in pure argon plasma at 500 °C. The microstructure and optical properties of the films were investigated versus silicon excess and post-deposition annealing treatment by means of ellipsometry and Fourier transform infrared spectrometry as well as by the photoluminescence method. A notable emission from Nd3+ ions was obtained for the as-deposited sample, while the films annealed at 900 °C showed the highest peak intensity. The maximum emission was observed for the films with 4.7 at% of Si excess.  相似文献   

5.
In this work, ZnO coatings were fabricated by the RF-sputtering method on quartz substrates in an inert gas ambient of Ar followed by a thermal oxidation process in air at different temperatures. The effect of thermal oxidation temperatures on the structures and photoluminescence (PL) properties of the coatings were studied. The structural characteristics of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM). The PL spectra were obtained by using a Xe laser as a light source with an excitation wavelength of 325 nm at room temperature. The force-curves were obtained by AFM. The results show that all the prepared ZnO coatings have a compact hexagonal wurtzite structure. With the increasing annealing temperature from 400 °C to 600 °C, the particle size, surface RMS roughness, photoluminescence intensity and adhesion force of the prepared ZnO coatings were increased as well.  相似文献   

6.
Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.  相似文献   

7.
By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ∼40% happened at 900–1250 nm region at room temperature. The change of optical transmittance at this region was ∼25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor–metal phase transition at ∼51 °C, the width of the hysteresis loop is ∼8 °C.  相似文献   

8.
《Physics letters. A》2020,384(4):126097
In order to develop high efficiency solar cell device by replacing conventional hazardous CdS window layer by environmental friendly Zn-based buffer layer, ZnSe thin films of thickness 100 nm were grown on glass and ITO substrates employing electron beam evaporation technique followed by air and vacuum annealing at temperature 100 °C, 200 °C and 300 °C. As-grown and annealed films were subjected to characterization tools like XRD, UV-Vis spectrophotometer, SEM, EDS and source meter. Structural results reveal the amorphous phase, SEM images indicate uniform deposition without pin holes and EDS patterns confirm the deposition. Transmittance is observed to be high in visible region and band gap is found to change with temperature of the treatment and I-V measurements demonstrate ohmic nature. On the basis of optimized results, the films annealed at 200 °C in vacuum may be used as buffer layer to develop high efficiency Cd-based and CIGS thin film solar cells.  相似文献   

9.
Film characterization based on variable-angle spectroscopic ellipsometry (VASE) is desirable in order to understand physical and optical characteristics of thin films. A number of TiO2 film samples were prepared by ion-assisted electron-beam evaporation with 200-nm nominal thickness, 2.0 Å/s deposition rate and 8 sccm oxygen flow rate. The samples were maintained at 250 °C during the deposition, and annealed in air atmosphere afterwards. As-deposited and annealed films were analyzed by VASE, spectrophotoscopy and X-ray diffractometry. From ellipsometry modeling process, the triple-layer physical model and the Cody–Lorentz dispersion model offer the best results. The as-deposited films are inhomogeneous, with luminous transmittance and band gap of 62.37% and 2.95 eV. The 300 °C and 500 °C are transition temperatures toward anatase and rutile phases, respectively. Increasing temperature results in an increase of refractive index, transmittance percentage and band gap energy. At 500 °C, the highest refractive index and band gap energy are obtained at 2.62 and 3.26 eV, respectively. The developed VASE-modeling process should be able to characterize other TiO2 films, using similar physical and optical modeling considerations.  相似文献   

10.
The pyrolytic decomposition of layered basic zinc acetate (LBZA) nanobelts (NBs) into nanocrystalline ZnO NBs is investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). We also report on the gas sensing response of the resulting ZnO nanomaterial to CO. The LBZA NBs are grown at 65 °C in an aqueous solution of zinc acetate dihydrate. AFM and SEM results show as-grown products possess the characteristic layered structure of the LBZA crystals. XRD and XPS results show that annealing as-grown products at 210 °C in air causes a transformation from zinc acetate to nanocrystalline ZnO NBs via thermal decomposition. The ZnO crystalline domain size increases with temperature from 9.2 nm at 200 °C to 94 nm at 1000 °C, as measured from XRD. SEM shows evidence of sintering at 600 °C. The thickness of the NBs, determined via AFM, ranges from 10 to 50 nm and remains approximately constant with annealing temperature. XPS confirmed the chemical transformation from zinc acetate to ZnO and showed a significant remaining zinc hydroxide component for the ZnO NBs consistent with published results. PL measurements at room temperature show a blue shift in peak emission as the nanobelts change from LBZA to ZnO at 200 °C. Above this transition temperature, the ZnO nanobelts possess strong band edge emission at 390 nm and little broad band emission in the visible region. The AFM and SEM images reveal that the crystallites within the nanobelts orientate in rows along the long axis during annealing. This structure provides a high surface area to volume ratio of aligned nanoparticles which is beneficial for gas sensing applications. Gas sensors fabricated from 400 °C annealed nanobelts showed a response of 1.62 when exposed to 200 ppm of CO in dry air at 400 °C, as defined by the ratio of resistance before and during exposure. This indicates that ZnO nanostructures obtained by thermal decomposition of LBZA NBs could provide a cost effective route to high sensitivity gas sensors.  相似文献   

11.
《Current Applied Physics》2001,1(2-3):191-195
After the undoped GaN epilayers were grown on (0 0 0 1) sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE), the photoconductivity (PC) and thermally stimulated current (TSC) measurements have been carried out so as to investigate the hydrogenation and annealing effect of the deep levels. These results indicate that the values of concentrations of the deep levels in the GaN epilayers decrease by the passivation of hydrogenation in both PC and TSC measurements. After hydrogenation, the PC intensity for the hydrogenated GaN epilayer decreased remarkably in comparison with that for the as-grown sample and the TSC peak near 150 K drastically decreased.In the case of PC measurement, the PC intensity for the hydrogenated and annealed GaN epilayer was approximately half that for the hydrogenated only GaN epilayer when the hydrogenated epilayer was annealed at 700°C. This result reveals that the passivation of the deep levels due to the hydrogenation is still effective at the annealing temperature of 700°C. In the case of TSC measurement, the deep levels changed slightly in comparison with that of hydrogenated GaN epilayer when the hydrogenated GaN epilayer was annealed at 600°C for 30 s. This result also shows that the passivation of deep levels due to the hydrogenation is still effective at the annealing temperature of 600°C for 30 s. In considering the above circumstances, these TSC results are in reasonable agreement with the PC results.  相似文献   

12.
Zinc oxide thin films were deposited by radio frequency magnetron sputtering. The films were annealed in vacuum at temperatures of 400, 600, and 800 °C. The influence of annealing on the structural, chemical, and optical properties of the films was investigated. From a structural point of view, the films were highly oriented, with columnar microstructure. Chemical analysis indicated that the films were sub-stoichiometric, and that the concentration of oxygen vacancies was enhanced upon annealing. The films were highly transparent in the visible and near-infrared spectral regions. Transparency was reduced as the annealing temperature was increased. The refractive index and extinction coefficient, in the transparent regions of the films, were derived from transmittance measurements. The refractive index manifested variation that was affected by crystallite size, roughness and defect concentration. The extinction coefficient of the as-deposited films and those annealed at 400 °C was negligible. However, the films annealed at 600 or 800 °C had much larger values of the extinction coefficient due to increased absorption or scattering. The absorption coefficient and optical band gap of the films were derived from spectrophotometric measurements. The absorption coefficient showed progressive increase with the annealing temperature. However, the band gap did not show significant variation.  相似文献   

13.
Li–Mn–O films are deposited by RF magnetron sputtering using 27.12 MHz as the excitation frequency. The sputtering rate of deposition is found to be higher than the one with conventional sputtering frequency. The rate of deposition as high as 42 Å/min has been achieved using this frequency. The X-ray diffraction patterns of films annealed in air show a gradual increase in crystallinity with the increase in annealing temperature. The electrochemical studies reveal that the films annealed at 700 °C show the best results in terms of crystallinity as well as discharge capacity. It is evident from this investigation that the higher excitation frequency magnetron discharge enhances the nucleation, and there by the rate of sputtering. This can be due to the reduced dc voltage appearing at the target surface at higher excitation frequency, which reduces the unnecessary ion bombardment of the growing film.  相似文献   

14.
Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600–900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3–5 μm and 8–14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.  相似文献   

15.
A novel synthesis was developed for enhanced luminescence in sesquioxide phosphors containing Eu3+ activator. It consisted of two annealing steps: reduction under vacuum with gaseous H2 at 10 Torr and 1300 °C and re-oxidation at 300–1500 °C in air. The integrated luminescence intensity of the monoclinic Eu2O3 phosphor was enhanced ca. 21 times by this method compared with conventional processing. The photoluminescence (PL) intensity was maximized at re-oxidation temperatures of 500–1100 °C. The PL characteristics of monoclinic Eu2O3 and Gd2O3:0.06Eu samples were compared with a commercial cubic Y2O3:Eu phosphor. The evolution of physical characteristics during the two-step annealing was studied by Raman spectroscopy, XPS, XRD, PL decay analysis, and SEM. PL decay lifetime increased proportionally to the PL intensity over the range 0.5–100 μs. Additional vibrational modes appeared at 490, 497, and 512 cm?1 after the two-step annealing. The increase in PL intensity was ascribed to the formation of excess oxygen vacancies and their redistribution during annealing. Resonance crossovers between the charge transfer state and the emitting 5DJ states are discussed in relation to reported luminescence saturation mechanisms for oxysulfides Ln2O2S:Eu3+ (Ln=Y, La).  相似文献   

16.
Structural, electrical and optical properties of Sb-doped CuInS2 thin films grown by single source thermal evaporation method were studied. The films were annealed from 100 to 500 °C in air after the evaporation. The X-ray diffraction spectra indicated that polycrystalline CuInS2 films were successfully obtained by annealing above 200 °C. This temperature was lower than that of non-doped CuInS2 films. Furthermore, We found that the Sb-doped CuInS2 thin films became close to stoichiometry in comparison with non-doped CuInS2 thin films. The Sb-doped samples annealed above 200 °C has bandgap energy of 1.43–1.50 eV.  相似文献   

17.
Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm−2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm−2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of −50 °C s−1 during the annealing cycle, 10–12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of −5 °C s−1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.  相似文献   

18.
We investigate effects of annealing on GaSb quantum dots (QDs) formed by droplet epitaxy. Ga droplets grown on GaAs are exposed to Sb molecular beam and then annealed at Ta=340–450 °C for 1 min to form GaSb QDs. An atomic force microscope study shows that with the increase of Ta, the average diameter of dots increases by about 60%, while their density decreases to about 1/3. The photoluminescence (PL) of GaSb QDs is observed at around 1 eV only for those samples annealed above Ta=380 °C, which indicates that the annealing process plays an important role in forming high quality GaSb QDs.  相似文献   

19.
As grown ZnO:Si nanocomposites of different compositional ratios were fabricated by thermal evaporation techniques. These films were subjected to post-deposition annealing under high vacuum at a temperature of 250 °C for 90 min. The photoluminescence (PL) spectra of annealed samples have shown marked improvements both in terms of intensity and broadening. Structural and Raman analyses show formation of a Zn–Si–O shell around ZnO nanoclusters wherein on heating Zn2SiO4 compound forms resulting in huge UV, orange and red peaks at 310, 570 and 640 nm in PL. The new emissions due to Zn2SiO4 completes white light spectrum. The study not only suggests that 1:2 ratio is the best suited for material manipulation but also shows process at the interface of ZnO nanoclusters and silicon matrix leads to new PL emissions.  相似文献   

20.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号