首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

2.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

3.
We report on the luminescence quenching mechanism of Eu-doped GaN powder phosphor produced with a low-cost, high yield rapid-ammonothermal method. We have studied as-synthesized and acid rinsed Eu-doped GaN powders with the Eu concentration of ~0.5 at.%. The Eu-doped GaN photoluminescence (PL) was investigated with 325 nm excitation wavelength at hydrostatic pressures up to 7.7 GPa in temperature range between 12 K and 300 K. The room temperature integrated Eu3+ ion PL intensity from acid rinsed material is a few times stronger than from the as-synthesized material. The temperature dependent PL studies revealed that the thermal quenching of the dominant Eu3+ ion transition (5D0  7F2) at 622 nm is stronger in the chemically modified phosphor indicating more efficient coupling between the Eu3+ ion and passivated GaN powder grains. Furthermore, it was found that thermal quenching of Eu3+ ion emission intensity can be completely suppressed in studied materials by applied pressure. This is due to stronger localization of bound exciton on Eu3+ ion trap induced by hydrostatic pressure. Furthermore, the effect of 2 MeV oxygen irradiation on the PL properties has been investigated for highly efficient Eu-doped GaN phosphor embedded in KBr–GaN:Eu3+ composite. Fairly good radiation damage resistance was obtained for 1.7 × 1012 to 5 × 1013 cm?2 oxygen fluence. Preliminary data indicate that Eu-doped GaN powder phosphor can be considered for devices in a radiation environment.  相似文献   

4.
This paper reports on a facile technique combined with a simple, sensitive and selective spectrofluorimetric method for the determination of hydrochlorothiazide. In methanol, at pH 8.3 and λex=340, hydrochlorothiazide can remarkably enhance the luminescence intensity of the Eu3+ ion doped in polymethylmethacrylate polymer (PMMA) matrix. This could be due to the energy transfer from hydrochlorothiazide to Eu3+ in the excited stated. At the optimized experimental conditions, the enhancement of the characteristic emission band (617 nm) of Eu3+ ion doped PMMA is directly proportional to the concentration of hydrochlorothiazide with a dynamic range of 5×10?8–1.0×10?5 mol L?1 and detection limit of 8.0×10?9 mol L?1. Application of the suggested method was successfully applied to the determination of hydrochlorothiazide in pharmaceutical preparations and human serum samples, with high percentage of recovery, good accuracy and precision.  相似文献   

5.
A novel synthesis was developed for enhanced luminescence in sesquioxide phosphors containing Eu3+ activator. It consisted of two annealing steps: reduction under vacuum with gaseous H2 at 10 Torr and 1300 °C and re-oxidation at 300–1500 °C in air. The integrated luminescence intensity of the monoclinic Eu2O3 phosphor was enhanced ca. 21 times by this method compared with conventional processing. The photoluminescence (PL) intensity was maximized at re-oxidation temperatures of 500–1100 °C. The PL characteristics of monoclinic Eu2O3 and Gd2O3:0.06Eu samples were compared with a commercial cubic Y2O3:Eu phosphor. The evolution of physical characteristics during the two-step annealing was studied by Raman spectroscopy, XPS, XRD, PL decay analysis, and SEM. PL decay lifetime increased proportionally to the PL intensity over the range 0.5–100 μs. Additional vibrational modes appeared at 490, 497, and 512 cm?1 after the two-step annealing. The increase in PL intensity was ascribed to the formation of excess oxygen vacancies and their redistribution during annealing. Resonance crossovers between the charge transfer state and the emitting 5DJ states are discussed in relation to reported luminescence saturation mechanisms for oxysulfides Ln2O2S:Eu3+ (Ln=Y, La).  相似文献   

6.
The effect of 60 keV Ar+-ion beam sputtering on the surface topography of p-type GaAs(1 0 0) was investigated by varying angle of incidence of the ion (0–60°) with respect to substrate normal and the ion fluence (2 × 1017–3 × 1018 ions/cm2) at an ion flux of 3.75 × 1013 ions/cm2-s. For normal incidence and at a fluence of 2 × 1017 ions/cm2, holes and islands are observed with the former having an average size and density of 31 nm and 4.9 × 109 holes/cm2, respectively. For 30° and 45° off-normal incidence, in general, a smooth surface appears which is unaffected by increase of fluence. At 60° off-normal incidence dots are observed while for the highest fluence of 3 × 1018 ions/cm2 early stage of ripple formation along with dots is observed with amplitude of 4 nm. The applicability and limitations of the existing theories of ion induced pattern formation to account for the observed surface topographies are discussed.  相似文献   

7.
The Zn/Er/Yb:LiNbO3 and Er/Yb:LiNbO3 crystals were grown by the Czochralski technique. The laser characteristics of 1.54 μm emission were predicted based on the Judd–Ofelt theory, and the intensity parameters Ωt (Ω2=7.23×10?20 cm2, Ω4=3.15×10?20 cm2 and Ω6=1.43×10?20 cm2) were obtained. The stimulated emission cross sections (σem) at 1.54 μm emission in Zn/Er/Yb:LiNbO3 were calculated based on the McCumber theory and the Füchtbauer–Ladenburg theory. The gain cross section spectrum of Zn/Er/Yb:LiNbO3 crystal was also investigated. Under 980 nm excitation, a lenghthening lifetime of 1.54 μm emission and an enhancement of green upconversion emission were observed for Zn/Er/Yb:LiNbO3 crystal. The studies on the power pump dependence and the upconversion mechanism suggested that both green and red upconversion emissions were populated via the three-photon process, and Zn2+ ion tridoping increases the probability of cross relaxation process between the two neighboring Er3+ ions.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

9.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

10.
Photoluminescence (PL) properties of Er-doped β-FeSi2 (β-FeSi2:Er) and Er-doped Si (Si:Er) grown by ion implantation were investigated. In PL measurements at 4.2 K, the β-FeSi2:Er showed the 1.54 μm PL due to the intra-4f shell transition of 4I13/24I15/2 in Er3+ ions without a defect-related PL observed in Si:Er. In the dependence of the PL intensity on excitation photon flux density, the obtained optical excitation cross-section σ in β-FeSi2:Er (σ=7×10−17 cm2) is smaller than that in Si:Er (σ=1×10-15 cm2). In the time-resolved PL and the temperature dependence of the PL intensity, the 1.54 μm PL in β-FeSi2:Er showed a longer lifetime and larger activation energies for non-radiative recombination (NR) processes than Si:Er. These results revealed that NR centers induced by ion implantation damage were suppressed in β-FeSi2:Er, but the energy back transfer from Er3+ to β-FeSi2 was larger than Si:Er.  相似文献   

11.
In this work, structural, thermal and optical properties of Eu3+ doped TeO2–La2O3–TiO2 glass were investigated. The differential scanning calorimetry (DSC) measurements reveal an important stability factor ΔT=143.52 K, which indicates the good thermal and mechanical stabilities of tellurite glass. From the absorption spectrum, the optical band gap was found to be direct with Eg=3.23 eV. The temperature dependences of photoluminescence (PL) properties of Eu-doped and Eu–Tb codoped tellurite glass are investigated. As the temperature increases from 7 to 300 K, both the PL intensity and the PL lifetime relative to the 5D27F0 are nearly constant below 230 K and then an enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from charged intrinsic defects states to Eu3+ energy levels.By co-doping tellurite glasses with Eu and Tb, a strong Eu3+ PL enhancement is shown due to excitation transfer from Tb3+ and intrinsic defects to Eu ions.  相似文献   

12.
Polycrystalline Na3SO4F:Eu and NaMgSO4F:Eu halosulphate phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. Two well resolved peaks are observed at 593 nm and 614 nm, which are assigned to due to 5D07F1 and 5D07F2 transitions of Eu3+ ions. TL is observed at temperatures between 100 °C and 300 °C. In this paper, we report PL emission spectra of Eu3+ and TL glow curves, which are more sensitive than the standard TLD-CaSO4:Dy. The presented phosphors are applicable for the mercury free lamps and solid state lighting devices.  相似文献   

13.
《Journal of luminescence》2003,65(2-4):127-133
BaMgAl10O17:Eu2+ (BAM) blue phosphor particles with improved photoluminescence (PL) intensity under vacuum ultraviolet (VUV) excitation were prepared by a spray pyrolysis process. In order to improve the PL intensity, Er3+ and Nd3+ ions were used as co-doping elements. The VUV characteristics of BAM:Eu2+, M+ (M=Er, Nd) were monitored with varying the Er3+ and Nd3+ content in order to find the optimal co-doping concentration when they were prepared by spray pyrolysis. It was found that doping Er3+ or Nd3+ enhances the PL intensity of BAM:Eu2+ blue phosphor particles. In particular, the M3+ doping effect on the PL intensity was pronounced when the prepared BAM:Eu2+, M3+ particles were excited by 172 nm VUV. The maximum intensity was obtained when the M3+ content was 1.0 at% with respect to Ba element. The PL intensity of BAM:Eu2+, M+ (M=Er3+, Nd3+) particles was also further improved by producing them in a spherical shape, which was successfully achieved by controlling the spray solution. The optimized BAM:Eu2+, M+ particles had about 10% higher PL intensity than that of the commercial particles, which are made by a conventional solid-state reaction.  相似文献   

14.
A new spectroflurometric method for the determination of adenosine disodium triphosphate (ATP) is developed. Fluorometric interaction between ATP and enoxacin (ENX)–Eu3+ complex was studied using UV–vis and fluorescence spectroscopy. Weak luminescence spectra of Eu3+ were enhanced after complexation with ENX at 589 nm and 614 nm upon excitation at 395 nm due to energy transfer from the ligand to the lanthanide ion. It was observed that luminescence spectrum of Eu3+ was strongly enhanced further at 614 nm after incorporation of ATP into the ENX–Eu3+ complex. Under optimal conditions, the enhancement of luminescence at 614 nm was responded linearly with the concentration of ATP. The linearity was maintained in the range of 1.5×10?10–1.15×10?8 M (R=0.9973) with the limit of detection (3σ) of 4.71×10?11 M. The relative standard deviation (RSD) for 9 repeated measurements of 1×10?9  M ATP was 1.25%. Successful determinations of ATP in soil, milk, and a pharmaceutical formulation with the proposed method were demonstrated.  相似文献   

15.
Eu3+-doped alkaline-earth tungstates MWO4 (M=Ca2+, Sr2+, Ba2+) were prepared by a polymeric precursor method based on the Pechini process. The polymeric precursors were calcined at 700 °C for 2 h in order to obtain well-crystallized powders and then characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and photoluminescence spectroscopy (PL). All prepared samples showed a pure crystalline phase with scheelite-type structure confirmed by XRD. It was noted that the charge-transfer band shifted from 260 to 283 nm when calcium is replaced by strontium. However, this band was not observed for Eu3+-doped barium tungstate. Upon excitation at 260 nm, the emission spectra are dominated by the red 5D07F2 transition at 618 nm. By analyzing of the emission lines, it was inferred that Eu3+ ions occupy low symmetry sites in the host lattice. It was also found that Eu3+-doped SrWO4 displays better chromaticity coordinates and greater luminescence intensity than the other samples.  相似文献   

16.
This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu3+ (1–5 mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu3+ phosphors can be effectively excited by the near ultraviolet (UV) (396 nm) light and exhibited strong red emission around 613 nm, which was attributed to the Eu3+ (5D0  7F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu3+ ions, electron–phonon coupling and Eu3+–Eu3+ interaction. The Judd–Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes.  相似文献   

17.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

18.
This paper describes an investigation of the crystalline morphology and photoluminescent properties of YInGe2O7 powders doped with different Eu3+ concentrations using microwave assisted sintering and conventional sintering. X-ray powder diffraction analysis confirmed the formation of monoclinic YInGe2O7 structure as YInGe2O7:Eu3+ powders were sintered at 1200 °C in microwave furnace for 1 h, and the raw material phase of Y2O3 was observed when Eu3+ concentration was below 30 mol%. Scanning electron microscopy showed microwave assisted sintering results in smaller particle size and more uniform grain size distribution. In the photoluminescent (PL) studies, the concentration quenching effect was observed under the excitation at 393 nm, but not under the excitation at CTS band. The 5D07F2 transition (620 nm), exhibits a non-exponential decay behavior as YInGe2O7:Eu3+ powders were sintered by microwave with the Eu3+ concentration higher than 50 mol%.  相似文献   

19.
Y2O3: Eu3+ has been widely applied as red phosphors in the fields of displaying and illumination. Here, we report the enhanced luminescence intensity of Y2O3: Eu3+ by codoping Pr3+ ion. The Pr3+ and Eu3+ doped Y2O3 microsheets with high aspect ratio were synthesized by a simple route combining chemical precipitation and pyrolysis, which could emit intense red light centered at 610 nm under the 254 and 365 nm UV excitation. The fluorescence measurement indicated that the luminescence intensity of Y2O3: Eu3+, Pr3+ did not increase monotonously with increasing Pr3+ concentration. The highest improvement of the photoluminescence intensity of Y2O3:Eu3+ was realized in the sample doped with 2 mol% Pr3+, which was of 17.8% higher than the whole intensity of only Eu3+ doped Y2O3.The mechanism analysis based on SEM, XRD, fluorescence spectra, and simplified energy level diagram indicated that (1) energy transfer process between Pr3+ and Eu3+, (2) crystallinity, and (3) symmetry should respond for this nonmonotonous variation phenomenon by competition with each other. For energy transfer process between Pr3+ and Eu3+, it was suggested that the cross relaxation of 5D0 + 7F1(Eu3+)?3P0 + 3H6(Pr3+) and the efficient energy transfer from 3P0 state of Pr3+ to 5D1 energy level of Eu3+ lead to the improvement of the population of the 5D0 state of Eu3+ so that the 610 red emission of Eu3+ ion was accordingly enhanced.  相似文献   

20.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号