首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic response of an isotropic hyperelastic membrane tube, subjected to a dynamic extension at its one end, is studied. In the first part of the paper, an asymptotic expansion technique is used to derive a non-linear membrane theory for finite axially symmetric dynamic deformations of incompressible non-linearly elastic circular cylindrical tubes by starting from the three-dimensional elasticity theory. The equations governing dynamic axially symmetric deformations of the membrane tube are obtained for an arbitrary form of the strain-energy function. In the second part of the paper, finite amplitude wave propagation in an incompressible hyperelastic membrane tube is considered when one end is fixed and the other is subjected to a suddenly applied dynamic extension. A Godunov-type finite volume method is used to solve numerically the corresponding problem. Numerical results are given for the Mooney-Rivlin incompressible material. The question how the present numerical results are related to those obtained in the literature is discussed.  相似文献   

2.
Natural frequencies of nonlinear coupled planar vibration are investigated for axially moving beams in the supercritical transport speed ranges. The straight equilibrium configuration bifurcates in multiple equilibrium positions in the supercritical regime. The finite difference scheme is developed to calculate the non-trivial static equilibrium. The equations are cast in the standard form of continuous gyroscopic systems via introducing a coordinate transform for non-trivial equilibrium configuration. Under fixed boundary conditions, time series are calculated via the finite difference method. Based on the time series, the natural frequencies of nonlinear planar vibration, which are determined via discrete Fourier transform (DFT), are compared with the results of the Galerkin method for the corresponding governing equations without nonlinear parts. The effects of material parameters and vibration amplitude on the natural frequencies are investigated through parametric studies. The model of coupled planar vibration can reduce to two nonlinear models of transverse vibration. For the transverse integro-partial-differential equation, the equilibrium solutions are performed analytically under the fixed boundary conditions. Numerical examples indicate that the integro-partial-differential equation yields natural frequencies closer to those of the coupled planar equation.  相似文献   

3.
The three-dimensional frame is simplified into flat plate by the method of quasiplate. The nonlinear relationships between the surface strain and the midst plane displacement are established. According to the thin plate nonlinear dynamical theory, the nonlinear dynamical equations of three-dimensional frame in the orthogonal coordinates system are obtained. Then the equations are translated into the axial symmetry nonlinear dynamical equations in the polar coordinates system. Some dimensionless quantities different from the plate of uniform thickness are introduced under the boundary conditions of fixed edges, then these fundamental equations are simplified with these dimensionless quantities. A cubic nonlinear vibration equation is obtained with the method of Galerkin. The stability and bifurcation of the circular three-dimensional frame are studied under the condition of without outer motivation. The contingent chaotic vibration of the three-dimensional frame is studied with the method of Melnikov. Some phase figures of contingent chaotic vibration are plotted with digital artificial method.  相似文献   

4.
Nonlinear free vibration of symmetrically laminated magneto-electro-elastic rectangular plate resting on an elastic foundation is studied analytically. The plate is considered to be simply supported on all edges. It is also assumed that the magneto-electro-elastic body is poled along the z direction and subjected to electric and magnetic potentials between the upper and lower surfaces. To model the motion of the plate, the first order shear deformation theory along with the Gauss's equations for electrostatics and magnetostatics are used. Then equations of motion are reduced to a single nonlinear ordinary differential equation which is solved analytically by multiple scales method. The results are compared with the published results and good agreement is found. Some numerical examples are presented to investigate the effects of several parameters on the linear and nonlinear behavior of these plates.  相似文献   

5.
In this study, the nonlocal Euler–Bernoulli beam theory is employed in the vibration and stability analysis of a nanobeam conveying fluid. The nanobeam is assumed to be traveling with a constant mean velocity along with a small harmonic fluctuation. In the considered analysis, the effects of the small-scale of the nanobeam are incorporated into the equations. By utilizing Hamilton’s principle, the nonlinear equations of motion including stretching of the neutral axis are derived. Damping effect is considered in the analysis. The closed form approximate solution of nonlinear equations is solved by using the multiple scale method, a perturbation technique. The effects of the different value of the nonlocal parameters, mean speed value and ratios of fluid mass to the total mass as well as effects of the simple–simple and clamped–clamped boundary conditions on the linear and nonlinear frequencies, stability, frequency–response curves and bifurcation point are presented numerically and graphically. The solvability conditions are obtained for the three distinct cases of velocity fluctuation frequency. For all cases, the stability areas of system are constructed analytically.  相似文献   

6.
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.  相似文献   

7.
The first objective of this paper is to present a series of accurate experimental measurements of the unsteady pressure in the annulus between two concentric cylinders, the outer one of which executes a harmonic planar motion, either transverse translational or rocking motion about a hinge, with and without annular flow. The second objective is the solution of the unsteady Navier–Stokes and continuity equations for the same annular geometry under the same boundary conditions for an incompressible fluid in the laminar regime. The solutions are obtained with a three-time-level implicit integration method in a fixed computational domain by assuming small amplitudes of oscillation of the outer cylinder. A pseudo-time integration method with artificial compressibility is used to advance the solution between consecutive real time levels. The finite difference method is used for spatial discretization on a stretched staggered grid. The problem is reduced to a scalar tridiagonal system, solved by a decoupling procedure which is based on a factored Alternating Direction Implicit (ADI) scheme with lagged nonlinearities. The third objective is the comparison of the experimental results with the theoretical ones. This comparison shows that the two are in good agreement in the case of translational motion, and in excellent agreement in the case of rocking motion. The experimental and theoretical work presented in this paper is useful for fluid–structure interaction and flow-induced vibration analyses in such geometries.  相似文献   

8.
The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.  相似文献   

9.
The loss of ellipticity indicated through the rank-one-convexity condition is elaborated for the spatial and material motion problem of continuum mechanics. While the spatial motion problem is characterized through the classical equilibrium equations parametrised in terms of the deformation gradient, the material motion problem is driven by the inverse deformation gradient. As such, it deals with material forces of configurational mechanics that are energetically conjugated to variations of material placements at fixed spatial points. The duality between the two problems is highlighted in terms of balance laws, linearizations including the consistent tangent operators, and the acoustic tensors. Issues of rank-one-convexity are discussed in both settings. In particular, it is demonstrated that if the rank-one-convexity condition is violated, the loss of well-posedness of the governing equations occurs simultaneously in the spatial and in the material motion context. Thus, the material motion problem, i.e. the configurational force balance, does not lead to additional requirements to ensure ellipticity. This duality of the spatial and the material motion approach is illustrated for the hyperelastic case in general and exemplified analytically and numerically for a hyperelastic material of Neo-Hookean type. Special emphasis is dedicated to the geometrical representation of the ellipticity condition in both settings.  相似文献   

10.
A new procedure on random uncertainty modeling is presented for vibration analysis of a straight pipe conveying fluid when the pipe is fixed at both ends. Taking real conveying condition into account, several randomly uncertain loads and a motion constraint are imposed on the pipe and its corresponding equations of motion, which are established from the Euler–Bernoulli beam theory and the nonlinear Lagrange strain theory previously. Based on the stochastically nonlinear dynamic theory and the Galerkin method, the equations of motion are reduced to the finite discretized ones with randomly uncertain excitations, from which the vibration characteristics of the pipe are investigated in more detail by some previously developed numerical methods and a specific Poincaré map. It is shown that, the vibration modes change not only with the frequency of the harmonic excitation but also with the strength and spectrum width of the randomly uncertain excitations, quasi-periodic-dominant responses can be observed clearly from the point sets in the Poincaré’s cross-section. Moreover, the nonlinear elastic coefficient and location of the motion constraint can be adjusted properly to reduce the transverse vibration amplitude of the pipe.  相似文献   

11.
In this paper supercritical equilibria and critical speeds of axially moving beams constrained by sleeves with torsion springs are deduced. Transverse vibration of the beams is governed by a nonlinear integro-partial-differential equation. In the supercritical regime, the corresponding static equilibrium equation for the hybrid boundary conditions is analytically solved for the equilibria and the critical speeds. In the view of the non-trivial equilibrium, comparisons are made among the integro-partial-differential equation, a nonlinear partial-differential equation for transverse vibration, and coupled equations for planar motion under the hybrid boundary conditions.  相似文献   

12.
Nonlinear forced vibrations of in-plane translating viscoelastic plates subjected to plane stresses are analytically and numerically investigated on the steady-state responses in external and internal resonances. A nonlinear partial-differential equation with the associated boundary conditions governing the transverse motion is derived from the generalized Hamilton principle and the Kelvin relation. The method of multiple scales is directly applied to establish the solvability conditions in the primary resonance and the 3:1 internal resonance. The steady-state responses are predicted in two patterns: single-mode and two-mode solutions. The Routh?CHurvitz criterion is used to determine the stabilities of the steady-state responses. The effects of the in-plane translating speed, the viscosity coefficient, and the excitation amplitude on the steady-state responses are examined. The differential quadrature scheme is developed to solve the nonlinear governing equations numerically. The numerical calculations confirm the approximate analytical results regarding the single-mode solutions of the steady-state responses.  相似文献   

13.
The flow of an Oldroyd 8‐constant non‐Newtonian MHD fluid is investigated analytically and numerically. The governing equations for the flow field are derived for a steady one‐dimensional flow. The effect of constant applied magnetic field is included and its influence on the flow field is studied. The nonlinear governing equation along with nonlinear boundary conditions is solved analytically and the solution is obtained in an elegant way. Numerical solutions are also obtained using higher order Chebyshev spectral methods. The influence of various non‐Newtonian parameters and applied magnetic field is investigated. Results showing the effect of various physical parameters of the flow are presented and investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A nonlinear vibration analysis of a simply supported functionally graded rectangular plate with a through-width surface crack is presented in this paper. The plate is subjected to a transverse excitation force. Material properties are graded in the thickness direction according to exponential distributions. The cracked plate is treated as an assembly of two sub-plates connected by a rotational spring at the cracked section whose stiffness is calculated through stress intensity factor. Based on Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the FGM plate are derived by using the Hamilton’s principle. The deflection of each sub-plate is assumed to be a combination of the first two mode shape functions with unknown constants to be determined from boundary and compatibility conditions. The Galerkin’s method is then utilized to convert the governing equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms under the external excitation, which is numerically solved to obtain the nonlinear responses of cracked FGM rectangular plates. The influences of material property gradient, crack depth, crack location and plate thickness ratio on the vibration frequencies and transient response of the surface-racked FGM plate are discussed in detail through a parametric study.  相似文献   

15.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

16.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement—small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential–Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.

  相似文献   

17.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

18.
ABSTRACT

A finite element based method is developed for geometrically nonlinear dynamic analysis of spatial articulated structures; i.e., structures in which kinematic connections permit large relative displacement between components that undergo small elastic deformation. Vibration and static correction modes are used to account for linear elastic deformation of components. Kinematic constraints between components are used to define boundary conditions for vibration analysis and loads for static correction mode analysis. Constraint equations between flexible bodies are derived in a systematic way and a Lagrange multiplier formulation is used to generate the coupled large displacement-small deformation equations of motion. A lumped mass finite element structural analysis formulation is used to generate deformation modes. An intermediate-processor is used to calculate time-independent terms in the equations of motion and to generate input data for a large-scale dynamic analysis code that includes coupled effects of geometric nonlinearity and elastic deformation. Examples are presented and the effects of deformation mode selection on dynamic prediction are analyzed in Part II of the paper.  相似文献   

19.
The paper deals with dynamic response of a thin-walled rectangular plate subjected to in-plane pulse loading. The plate is made of orthotropic (fibre composite) material in which the principal directions of orthotropy are parallel to the plate edges. The plate is characterised by a widthwise varying fibre volume fraction. The structures are assumed to be simply supported at the loaded ends and at non-loaded ends with five different boundary conditions (both simply supported, both fixed, simply supported fixed, simply supported free edge, fixed free edge). In order to obtain the equations of motion the non-linear theory of orthotropic thin-walled plates has been modified in such a way that it additionally accounts for all components of inertial forces. The differential equations of motion have been obtained from Hamilton’s Principle. The problem of nonlinear static stability was solved with the second order of the Koiter’s asymptotic stability theory of conservative systems. The results obtained from analytical–numerical method were compared with the results from finite element method (FEM).  相似文献   

20.
Axially moving beam-typed structures are of technical importance and present in a wide class of engineering problem. In the present paper, natural frequencies of nonlinear planar vibration of axially moving beams are numerically investigated via the fast Fourier transform (FFT). The FFT is a computational tool for efficiently calculating the discrete Fourier transform of a series of data samples by means of digital computers. The governing equations of coupled planar of an axially moving beam are reduced to two nonlinear models of transverse vibration. Numerical schemes are respectively presented for the governing equations via the finite difference method under the simple support boundary condition. In this paper, time series of the discrete Fourier transform is defined as numerically solutions of three nonlinear governing equations, respectively. The standard FFT scheme is used to investigate the natural frequencies of nonlinear free transverse vibration of axially moving beams. The numerical results are compared with the first two natural frequencies of linear free transverse vibration of an axially moving beam. And results indicate that the effect of the nonlinear coefficient on the first natural frequencies of nonlinear free transverse vibration of axially moving beams. The numerical results also illustrate the three models predict qualitatively the same tendencies of the natural frequencies with the changing parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号