首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(0.5 mol%) Dysprosium (Dy) doped bismuth silicon oxide (BSO) single crystals were grown by the Czochralski technique under air atmosphere. Detailed analysis of Dy-doped BSO with pure BSO has been studied through optical analysis. The absorption edges of pure and Dy-doped BSO crystals are found to be 405 nm and 415 nm, respectively. The shift in the absorption edge is contributed to the defect centers created in the crystal with Dy-doping. The shifts observed in the Raman spectra on doping Dy are found to be lower, when compared with the pure BSO crystal. This effect can be correlated to the lattice distortion induced by the Dy doping. The oxide formation and intrinsic defects in the BSO crystal have been identified by photoluminescence analysis. Dielectric measurements reveal that higher permeability value in the BSO sample is due to the presence of charged defects, which can be related to the space charge polarization. There is a slight decrease in dielectric constant on doping with Dy. The piezoelectric value explains the defects formed in the crystal. On poling, d33 value of BSO and Dy-doped BSO are 32 pC/N and 40 pC/N, respectively.  相似文献   

2.
Crystals of RbBe2BO3F2 up to a size of 22×18×5 mm3 have been grown by the hydrothermal method. The growth conditions were optimized mainly by adjusting the mineralizers and growth temperature. The crystals linear and nonlinear optical properties, including its transmittance spectrum and second harmonic generation from 532 to 266 nm, were measured and compared with those of flux grown crystals. A maximum conversion efficiency of 20% was obtained with a 25 ps, 10 Hz laser system. The results indicate that RbBe2BO3F2 crystals grown by the hydrothermal method show similar capability for frequency conversion compared with flux grown crystals and are promising for future deep-UV harmonic generation.  相似文献   

3.
《Journal of Crystal Growth》2006,286(1):126-130
The absorption spectra of the undoped Y2SiO5 and Eu3+-doped Y2SiO5 crystals grown by the Czochralski technique were compared before and after annealing and, similarly, the unannealed and annealed crystals after γ-ray irradiation. The absorption bands of Eu2+ ions with peaks at 300 and 390 nm were observed in the as-grown Y2SiO5:Eu3+ crystal. These peaks were more intense in H2-annealed and irradiated Y2SiO5:Eu3+ crystals. The additional absorption peaks at 260 and 320-330 nm which were attributed to F color centers and O hole centers were observed in irradiated undoped Y2SiO5 and Y2SiO5:Eu3+ crystals, respectively.  相似文献   

4.
Classic composition 8.4Na2O·5K2O·10.8CaO·64SiO2·10.5CaF2·1.3Al2O3 (G1/GC1) and high silicon composition 7.6Na2O·4K2O·8.4CaO·71SiO2·8CaF2·1.0Al2O3 (G2/GC2) canasite-based glass and glass-ceramics were prepared, and the chemical durability and weathering of samples were studied with XRD, ICP-AES, SEM and optical microscopy. Interestingly, a kind of color fringe pattern caused by the acid leaching was directly observed on the glass ceramic surface under optical microscopy. The 20 day weight losses of glass and glass ceramic in acid (1 M HCl) and alkali (1 M NaOH/1 M Na2CO3) solution were measured. Accelerated weathering was used to demonstrate that increasing silicon content contributes to the weathering performance of glass and glass-ceramics. For different micro-structures and compositions, the weight loss of each glass and glass-ceramic is quite different. In general, through increasing the network interconnectivity of residual glass network and suppressing the crystallization of the less durable canasite phase, the addition of SiO2 (from 60 mol% to 71 mol%) enhanced the chemical durability of canasite-based glass and glass ceramic relatively under acid, alkali and weathering conditions.  相似文献   

5.
《Journal of Non》2006,352(23-25):2434-2438
LiGaTe2 crystals have been grown by the Bridgman–Stockbarger technique. The clear transparency range of LiGaTe2 extends from 2.5 to 12 μm and its band-gap at room temperature is at 2.41 eV (515 nm). LiGaTe2 is a positive uniaxial crystal which possesses sufficient birefringence for phase-matching. Its non-linear coefficient d36 estimated by phase-matched second harmonic generation is 43 pm/V ± 10% at 4.5 μm. The properties of LiGaTe2 are compared to those of other mid-IR chalcopyrite non-linear optical crystals with special emphasis on the frequency doubling potential for CO2 lasers operating at 10.6 μm.  相似文献   

6.
Single crystals of aluminum substituted barium hexaferrite were grown by the floating zone method with optical heating. Single crystals were produced from a melt of stoichiometric composition. The process was carried out under a pressure of 50 atm of oxygen. In the system BaO–(x)Al2O3–(6?x)Fe2O3 the region of single phase crystal growth from the melt is limited by the value x=3. For higher substitutions single-phase crystallization is not observed. The grown single crystals are cylindrical boules with a diameter of 4–5 mm and with lengths up to 50 mm. To avert cracking the crystals have been annealed during the process of growth at 1100 °C. The content of FeO in the composition of single crystals of barium hexaferrite, grown by zone melting under an oxygen pressure of 50 atm, is approximately 0.3 wt%. In the system of hexaferrite–aluminates the macroscopic magnetic moment of the material disappears at x=3.  相似文献   

7.
The growth of ZnGeP2 crystals by seeded Vertical Bridgman method was studied. High-quality near-stoichiometric ZnGeP2 single crystals obtained were of 20–30 mm in diameter and 90–120 mm in length. By selection of the seed crystallographic orientation the single crystal ingots without cracks and twins were grown, as shown by X-ray diffraction. The infrared transmission property of the ZnGeP2 crystals was studied by the calculated optical absorption coefficient spectra. The results showed that after thermal annealing of the crystals the optical absorption coefficient was ~0.10 cm?1 at 2.05 μm, and ~0.01 cm?1 at 3–8 μm. The rocking curves patterns of the (4 0 0) reflection demonstrated that the as-grown single crystals possessed a good structural quality. The composition of the crystals was close to the ideal stoichiometry ratio of 1:1:2. The low-loss typical ZnGeP2 samples of 6 mm×6 mm×15 mm in sizes were cut from the annealed ingots for optical parametric oscillation experiments. The output power of 3.2 W was obtained at 3–5 μm when the incident pumping power of 2.05 μm laser was 9.4 W, and the corresponding slope efficiency and the conversion efficiency were 44% and 34%, respectively.  相似文献   

8.
Large single crystals of β-Mn2V2O7 are successfully grown at a slow cooling rate using flux method in a closed crucible. The grown crystals exhibit a characteristic morphology with natural (1 1 0) and (3 5 0) facets. X-ray diffraction and chemical analyses show that the grown crystals have high quality.  相似文献   

9.
The crystallization behavior of 30Na2O–25Nb2O5–(45 ? x) SiO2–xAlO1.5 (x = 0, 2.5, and 5) (mol%) glasses was examined and the effect of Al2O3 addition on the formation of perovskite-type NaNbO3 crystals was clarified. It is found from X-ray diffraction analyses and transmission electron microscope observations that NaNbO3 nanocrystals are formed in all glasses and the size of NaNbO3 crystals decreases with the substitution of Al2O3 for SiO2. A crystallized (heat-treated at 684 °C for 5 h) glass with x = 5, which contains NaNbO3 nanocrystals with an average size of 50 nm, shows good optical transparency in the wavelength region of 500–2000 nm and a small hysteresis loop in the polarization–electric field curve. The lines containing NaNbO3 crystals were patterned on the surface of NiO-doped glass with x = 5 by irradiations (power: 1.3–1.4 W, scanning speed: 10 μm/s) of Yb:YVO4 fiber laser (wavelength: 1080 nm). The formation mechanism of NaNbO3 nanocrystals in aluminosilicate glasses was also discussed.  相似文献   

10.
Silicon nanocrystals (Si-NCs) with different sizes embedded in SiO2 matrix were synthesized by phase separation and thermal crystallization of SiOx/SiO2 supperlattice approach. The optical constants and band gap expansion of Si-NCs have been investigated by spectroscopic ellipsometry, based on the Maxwell–Garnett effective medium approximation and the Forouhi–Bloomer optical dispersion model. Similar spectra shapes but smaller values of Si-NCs optical constants with respect to bulk crystalline Si is observed. With the size of Si-NCs decreasing from 6 nm to 2 nm, the band gap increases from 1.64 eV to 2.56 eV. The band gap expansion, as compared to bulk crystalline Si, which agrees with the prediction of first-principles calculations based on quantum confinement effect, is presented in this paper.  相似文献   

11.
《Journal of Non》2006,352(32-35):3613-3617
In this work several different compositions of CaO:Al2O3:SiO2 were prepared under vacuum atmosphere to study the glass forming ability of this system as a function of the SiO2 content. Samples containing 25–45 wt% of Al2O3, 31–44 wt% of CaO, 14–39 wt% of SiO2 and 4.1 wt% of MgO were prepared in graphite crucibles, for approximately 2 h at ∼ 1600 °C. The influence of silica content is discussed in terms of the mechanical properties, glass transition temperature, crystallization temperature, transmittance spectrum, refractive index, mass density, specific heat, thermal diffusivity, thermal conductivity and the temperature coefficient of optical path length change. The results reinforce the idea that these glasses are strong materials, having useful working-temperature range, good combination of thermal, mechanical and optical properties that could be exploited in many optical applications, in particular, as glass laser materials.  相似文献   

12.
Tb3 + single-doped SiO2 (SiO2:Tb3 +) and Tb3 +, Ag co-doped SiO2 (SiO2:Tb3 +–Ag) nanostructured luminescent materials were prepared by a modified Stöber method. Their microstructure and optical property were investigated using scanning electron microscopy, ultraviolet visible absorption and photoluminescence spectrophotometry. Results show that the samples are composed of well-dispersed near-spherical particles with a diameter about 50 nm, the highest fluorescence intensity is obtained when the doping concentration of Tb3 + is 4.86 mol%, the corresponding internal quantum efficiency is 13.6% and the external quantum efficiency is 8.2%. The experimental results indicate that Ag nanoparticles can greatly enhance the light absorption at 226 nm and the light emission at 543 nm of SiO2:Tb3 +–Ag, and the fluorescence lifetime reduces with increasing Ag concentration in SiO2:Tb3 +–Ag. Additionally, the present results indicate that fluorescence enhancement is attributed to the local field enhancement and the increased radiative decay rates induced by Ag nanoparticles.  相似文献   

13.
l-Prolinium picrate was synthesized and its solubility in the mixed solvent of acetone and water was estimated. Employing temperature reduction method crystals of size 22×4×3 mm3 were grown. The cell dimensions were obtained by single-crystal X-ray diffraction study. FT-IR, UV–vis–NIR and fluorescence spectral analyses were carried out for the grown crystals. The optical band gap estimated for this crystal is about 2.4 eV. Thermogravimetric study was carried out to determine the thermal properties of the grown crystal. Kurtz powder second harmonic generation (SHG) efficiency measurement revealed that the SHG efficiency is about 52 times that of potassium dihydrogen orthophosphate. Mechanical strength was tested by Vicker's microhardness test.  相似文献   

14.
《Journal of Non》2007,353(5-7):703-707
The change of optical and electrical properties of SiO2 layer on Si single crystal exposed to YAG:Nd laser radiation has been found experimentally. The second harmonic of YAG:Nd laser was used as a source of light. Before irradiation the SiO2 layer with thickness 0.75 μm had red color in reflecting light due to the interference. After irradiation with the laser with intensity of more than 3.5 MW/cm2 red color changed to yellow. However, samples with thickness 0.21 μm did not change color after irradiation. We explain such peculiarities of optical properties by change of optical path. Capacity (C) measurements of SiO2 layer with thickness 0.21 μm by the method of capacity–voltage characteristics have shown a decrease of C to more than 40%. It is possible if real part of dielectric permittivity (K) decreases or thickness of the SiO2 layer increases. Atomic force microscope and profilemeter measurements did not show any change of surface roughness for the SiO2 layer with thickness 0.21 μm. We suppose that after irradiation of the SiO2 layer decrease of K takes place due to the formation of nanopores in SiO2 or/and generation of the charged point defect at the interface of Si–SiO2. Particularly the first is in agreement with measurements of micro hardness and capillary effect.  相似文献   

15.
Er3+-doped glass-ceramic SiO2–ZrO2 optical planar waveguides were prepared by the sol–gel route using different SiO2:ZrO2 molar ratios (90:10, 85:15, 80:20 and 75:25). Multilayered films were deposited onto Si(1 0 0) substrates by the dip-coating technique. Structural characterization was performed using vibrational spectroscopy and X-ray diffraction. Some optical properties, densification and surface morphology of these films were investigated as a function of the SiO2:ZrO2 ratio, annealing temperature and time. Optical properties such as refractive index, number of propagating modes and attenuation coefficient were measured at 632.8, 543.5 and 1550 nm, by the prism coupling technique. Uniform surface morphology with roughness less than 0.5 nm. Low losses, less than 0.9 dB/cm at 612.8 nm in the TE0 mode, were measured for the planar waveguides containing up to 25 mol% zirconium oxide. Luminescence of Er3+ in the near infrared was observed for the active nanocomposite.  相似文献   

16.
Pr:Gd3(Ga,Al)5O12 single crystals were grown by the micro-pulling down (μ-PD) method. All grown crystals were greenish and transparent with 3.0 mm in diameter, 15–30 mm in length. Neither visible inclusions nor cracks were observed. Luminescence and scintillation properties were measured. The substitution at the Al3+ sites by Ga3+ in garnet structure has been studied. In these crystals, Pr3+ 5d–4f emission is observed with 340 nm wavelength. Pr1%:Gd3Ga3Al2O12 shows highest emission intensity. The light yield of Pr:Gd3Ga3Al2O12 sample with 3 mmφ×1 mm size was around 4500 photon/MeV. Scintillation decay time was 7.9 ns (0.5%), 46 ns (0.7%) and 214 ns (98.8%).  相似文献   

17.
ZnGeP2 single crystals were grown using two-temperature zone vertical Bridgman method. The effect of crucible material, crucible shape, and cooling program on the growth of the ZnGeP2 crystal was investigated. The qualities of the crystals were evaluated by high resolution X-ray diffraction, X-ray fluorescence spectrometry, and IR transmittance spectra. The results show that the full width at half maximum of the rocking curves for (200), (004), and (220) faces are 45″, 37″, and 54″, respectively. The concentration of the P, Zn and Ge are almost homogeneous along the growth axis, but P and Zn are slightly deficient compared with Ge in the as-grown ZnGeP2 crystals. The increase of annealing temperature from 600 °C to 700 °C has little effect on the reduction of the absorption losses in ZnGeP2 powders, and has negative effect on the reduction of the absorption losses in ZnP2 powders. Annealed in ZnP2 powders at 600 °C for 300 h, the optical absorption loss at 2.05 μm reduce by 37%, compared with that of 27% reduction annealed in ZnGeP2 powders.  相似文献   

18.
《Journal of Non》2007,353(18-21):1849-1853
Recent molecular dynamics (MD) results for (Na2O)x(SiO2)1−x and (CaO)x(SiO2)1−x glasses show that co-ordination of bridging oxygen (Ob) by modifiers (M) is a normal structural feature. This can be explained as a consequence of the limitation on oxygen co-ordination in network oxides, a common rule of thumb being that total co-ordination of oxygen by (Si + M) is ⩽4. This gives an upper limit on co-ordination of non-bridging oxygen (Onb) by modifiers of NOnbM  m with m = 3, corresponding to NMOnb  mv, where v is modifier valence. If modifier co-ordination exceeds this limit, i.e. NMO > mv, then there is bonding of Ob to modifiers, i.e. NObM > 0. This is the case in alkali and alkaline earth silicate crystals (apart from Be and Mg), and is predicted to be a feature of glasses in these systems. An illustration of the influence of oxygen co-ordination is given from MD models of (CaO)0.33 (SiO2)0.67 glass at pressures of 5 and 10 GPa. The main effect of densification is to increase the co-ordination of Ca by Ob. This can be understood because at 0 GPa the co-ordination of Onb by Ca is already high, with NOnbCa  2.7, but the co-ordination of Ob by Ca is less high, with NObCa  1, and so can more easily increase.  相似文献   

19.
Two different growth mechanisms are compared for the fabrication of Si/SiO2 nanostructures on crystalline silicon (c-Si) to be used as hetero-emitter in high-efficiency solar cells: (1) The decomposition of substoichiometric amorphous SiOx (a-SiOx) films with 0 < x < 1.3 and (2) the dewetting of thin amorphous silicon (a-Si) layers.The grown layers are investigated with regard to their structural properties, their passivation quality for c-Si wafer substrates and their electrical properties in order to evaluate their suitability as a nanodot hetero-emitter. While by layer decomposition, no passivating nanodots could be formed, the dewetting process allows fabricating nanodot passivation layers at temperatures as low as 600 °C. The series resistance through Ag/[Si-nanodots in SiO2]/c-Si/Al structures for dewetting is similar to nanostructured silicon rich SiOx films. Still, a nanodot hetero-emitter which exhibits both a satisfying passivation of the substrate and induces a high band bending by doping at the same time could not be fabricated yet.  相似文献   

20.
Photosensitivity of SiO2–Al and SiO2–Na glass samples was probed by means of the induced optical absorption and luminescence as well as by electron spin-resonance (ESR) after irradiation with excimer-laser photons (ArF, 193 nm). Permanent visible darkening in the case of SiO2–Al and transient, life time about one hour, visible darkening in the case of SiO2–Na was found under irradiation at 290 K. No darkening was observed at 80 K for either kind of material. This investigation is dedicated to revealing the electronic processes responsible for photosensitivity at 290 and 80 K. The photosensitivity of both materials is related to impurity defects excited directly in the case of SiO2–Na and/or by recapture of self-trapped holes, which become mobile at high temperature in the case of SiO2–Al. Electrons remain trapped on the localized states formed by oxygen deficient defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号