首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

2.
Results of structural and spectroscopic measurements of Sm3+ doped calcium aluminates: Ca1?xSmxAl4O7 and Ca1?2xSmxNaxAl4O7 (x=0.0005, 0.002, 0.01, 0.02, 0.03, 0.05) obtained by the modified Pechini method are presented. All samples yield intense orange–red emission under violet excitation (404.5 nm). Narrow bands corresponding to characteristic f–f intraconfigurational transition of Sm3+ in excitation and emission spectra were observed. The influences of the concentration of Sm3+ as well as charge compensation by co-doping with Na+ ions on the luminescent properties of the phosphor were investigated. Detailed analysis of the emission spectra of Sm3+ doped and Sm3+,Na+ co-doped CaAl4O7 powders proved that activator ions substitute Ca2+ in the host. Co-doping with Na+ ions enhanced greatly the intensity of the luminescence. Concentration dependencies of the intensity of luminescence and its decay kinetics proved the emission quenching at higher dopant contents due to cross-relaxation processes between Sm3+ ions. Fitting of the 4G5/2 state fluorescence decay to the Inokuti–Hirayama model indicated dipole–dipole interaction as the dominant mechanism of the cross-relaxation processes.  相似文献   

3.
A novel red phosphor La2MgTiO6:xEu3+ was successfully synthesized by the conventional solid state method. Excited by ultraviolet (395 nm) and blue (465 nm) light, La2MgTiO6:xEu3+ exhibits intense red emission. Due to the lack of inversion symmetry at the doping sites, the dominant emission peak is from the transition 5D07F2. Non-radiative transitions were demonstrated to be from dipole–dipole interactions and the critical distance was estimated to be ~9.19 Å. When Eu3+ ions' concentration reaches 15%, the emission intensity is about three times higher than that of the conventional phosphor Y2O3:Eu3+. The Commission International de L'Eclairage chromaticity coordinate was calculated to be x=0.657 and y=0.343. All the results indicate that La2MgTiO6:xEu3+ has superior luminescence properties.  相似文献   

4.
The Sr2MgSi2O7:Eu2+,Dy3+ materials were prepared with a solid state reaction and their microscopic structure (at 295 K only) and luminescence were studied at selected temperatures between 150 and 295 K. Undisturbed Sr crystal planes were common in the TEM images of the undoped Sr2MgSi2O7 material, whereas with Eu2+ doping more disturbed planes were observed even in the nanometer scale. With Dy3+ co-doping, a large number of small lattice domains created by the discontinuities in the crystal structure was observed. The domains with different orientations seem to be centered around point defects. The decay curves of Sr2MgSi2O7:Eu2+,Dy3+ showed fast (ms scale) persistent luminescence. The intensity of persistent luminescence increased considerably between 200 and 250 K while remaining constant in the ranges of 150–200 and 250–295 K. The changes were used to study the depth of the traps. In general, Dy3+ co-doping was found to deepen the traps.  相似文献   

5.
An Eu2+-activated oxynitride LiSr(4?y)B3O(9?3x/2)Nx:yEu2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr4B3O(9?3x/2)Nx:Eu2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f65d1→4f7 transition of Eu2+. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr3.99B3O8.25N0.5:0.01Eu2+ phosphors, respectively. Concentration quenching of Eu2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu2+-site emission centers in the LiSr4B3O9 host. These results indicate LiSr4B3O(9?3x/2)Nx:Eu2+ phosphor is promising for application in white near-UV LEDs.  相似文献   

6.
Eu3+ and Sm3+ activated M2SiO4 (M=Ba, Sr and Ca) red-emitting phosphors were synthesized by a solid state reaction. The results of XRD and SEM measurements show that the samples are single phase and have irregular shape. The excitation and emission spectra indicate that these phosphors were effectively excited by ultraviolet (395 nm) and blue (466 nm) light and exhibited red performance. The charge compensator R+ (R+=Li+, Na+ and K+) injecting into the host efficiently enhanced the luminescence intensity of the M2SiO4: Eu3+ and M2SiO4: Sm3+ phosphors. The emission intensity of M2SiO4: Eu3+ and Sm3+ doping Li+ were higher than that of Na+ or K+.  相似文献   

7.
A series of orange reddish emitting phosphors Eu3+-doped Sr3Bi(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence (PL) properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Bi(PO4)3:Eu3+ phosphors invariably exhibit five peaks assigned to the 5D07FJ (J=0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The luminescence intensity was enhanced with increasing Eu3+ content and the emission reached the maximum intensity at x=0.05 in Sr3Bi(PO4)3:xEu3+. The energy transfer behavior in the phosphors was discussed. The Commission Internationale de lEclairage (CIE) chromaticity coordinates, the quantum efficiencies, and the decay curves of the entitled phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Bi(PO4)3 phosphors are promising orange reddish-emitting phosphors pumped by near-UV light.  相似文献   

8.
Sr2+ doped BaAl2Si2O8:Eu2+ phosphor was synthesized by chemical co-precipitation method. With the increase of Sr2+ concentration, the phase structure of (Ba0.965 ? xSrxEu0.035)Al2Si2O8 changes from hexagonal phase to monoclinic phase owing to large activation energy in SrAl2Si2O8 system. (Ba0.965 ? xSrxEu0.035)Al2Si2O8 phosphor exhibits a broad blue band peaking at 425 nm due to the 4f65d–4f7(8S7/2) transition of Eu2+ ions. The emission intensity increases, accompanied by the blue shift of emission maximum from 459 to 417 nm with the Sr2+ doping concentration increasing. The optimal concentration of Sr2+ ion is 40%, and the phosphor shows high color stability in CIE chromaticity diagram. The result indicates that Sr2+ doped phosphor not only can enhance the relative intensity but also can adjust the chromaticity coordinate.  相似文献   

9.
New red tungstates phosphors, Na5La1?xLnx(WO4)4 (Ln = Eu, Sm) and Na5Eu1?xSmx(WO4)4, were prepared by solid-state reaction technique. And their structure and photo-luminescent properties were investigated. The introduction of Sm3+ broadened the excitation band around 400 nm of the phosphors, and strengthened the red emission. And the possible energy transfer process from Sm3+ to Eu3+ is discussed. The single red LED was fabricated by combining InGaN chip with Na5Eu0.94Sm0.06(WO4)4 as red phosphor, intense red light can be observed by naked eyes. Then the phosphor Na5Eu0.94Sm0.06(WO4)4 may be a good candidate for red component of near-UV InGaN-based W-LEDs, because of efficient red-emitting with broadened absorption around 400 nm and appropriate CIE chromaticity coordinates (x = 0.65, y = 0.34).  相似文献   

10.
In this paper, effect of Eu3+ doping concentrations on microstructure and photoluminescence of Sr2SiO4 phosphors was investigated. The Sr2?xSiO4:xEu3+ phosphors with x=0.05, 0.1, 0.2, 0.3 were synthesized by microwave assisted sintering at 1200 °C for 60 min in air. X-ray powder diffraction analysis confirmed the formation of pure Sr2SiO4 phase without second phase or phases of starting materials irrespective of the adding amount of Eu3+. From scanning electron microscopy image, it is found that with more Eu3+ ions introduced to Sr2SiO4, the shape of the particles is not much different from each other, but the particle size decreases significantly from 1 to 2 μm (when x=0.05) to less than 500 nm (when x=0.3). The emission spectrum was located obviously at 617 nm as the excitation spectrum at λex=395 nm, and it had best emission intensity when x=0.1.  相似文献   

11.
Y2O3: Eu3+ has been widely applied as red phosphors in the fields of displaying and illumination. Here, we report the enhanced luminescence intensity of Y2O3: Eu3+ by codoping Pr3+ ion. The Pr3+ and Eu3+ doped Y2O3 microsheets with high aspect ratio were synthesized by a simple route combining chemical precipitation and pyrolysis, which could emit intense red light centered at 610 nm under the 254 and 365 nm UV excitation. The fluorescence measurement indicated that the luminescence intensity of Y2O3: Eu3+, Pr3+ did not increase monotonously with increasing Pr3+ concentration. The highest improvement of the photoluminescence intensity of Y2O3:Eu3+ was realized in the sample doped with 2 mol% Pr3+, which was of 17.8% higher than the whole intensity of only Eu3+ doped Y2O3.The mechanism analysis based on SEM, XRD, fluorescence spectra, and simplified energy level diagram indicated that (1) energy transfer process between Pr3+ and Eu3+, (2) crystallinity, and (3) symmetry should respond for this nonmonotonous variation phenomenon by competition with each other. For energy transfer process between Pr3+ and Eu3+, it was suggested that the cross relaxation of 5D0 + 7F1(Eu3+)?3P0 + 3H6(Pr3+) and the efficient energy transfer from 3P0 state of Pr3+ to 5D1 energy level of Eu3+ lead to the improvement of the population of the 5D0 state of Eu3+ so that the 610 red emission of Eu3+ ion was accordingly enhanced.  相似文献   

12.
We report on the preparation of Eu2+-doped BaSi2O5 glass-ceramics by crystallizing an Eu3+-doped barium-silicate glass at temperatures in the range from 750 to 1100 °C. Single phase BaSi2O5 glass ceramics can be obtained by thermal annealing at temperatures of about 950 °C. The luminescence intensity of Eu2+ increases dramatically if monoclinic BaSi2O5 is formed. Monoclinic Eu2+:BaSi2O5 shows efficient, broad band luminescence between 450 and 550 nm by excitation in the near UV. Annealing at temperatures >1000 °C leads to orthorhombic BaSi2O5 with much smaller Eu2+ luminescence. Static and time-resolved luminescence measurements indicate that Eu2+ ions are incorporated into the BaSi2O5 crystallites while Eu3+ ions remain in the amorphous phase.  相似文献   

13.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

14.
Eu3+-doped alkaline-earth tungstates MWO4 (M=Ca2+, Sr2+, Ba2+) were prepared by a polymeric precursor method based on the Pechini process. The polymeric precursors were calcined at 700 °C for 2 h in order to obtain well-crystallized powders and then characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and photoluminescence spectroscopy (PL). All prepared samples showed a pure crystalline phase with scheelite-type structure confirmed by XRD. It was noted that the charge-transfer band shifted from 260 to 283 nm when calcium is replaced by strontium. However, this band was not observed for Eu3+-doped barium tungstate. Upon excitation at 260 nm, the emission spectra are dominated by the red 5D07F2 transition at 618 nm. By analyzing of the emission lines, it was inferred that Eu3+ ions occupy low symmetry sites in the host lattice. It was also found that Eu3+-doped SrWO4 displays better chromaticity coordinates and greater luminescence intensity than the other samples.  相似文献   

15.
In this paper we report the combustion synthesis of rare earth (RE=Eu, Dy) doped Ba4Al2O7 phosphors. Prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), CIE color co-ordinates and their photoluminescence (PL) properties were also investigated. In case of Ba4Al2O7: Eu2+, the emission spectra show unique band centered at 495 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+, and PL emission spectra of Dy3+ ion under 348 nm excitation give two bands centered at 478 nm (blue) and 575 nm (yellow), which originate from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The results indicate that the Eu2+ and Dy3+ activated Ba4Al2O7 phosphor could find application in solid state lighting.  相似文献   

16.
Novel blue/green NaSrPO4 phosphors co-doped with Eu2+ and Tb3+ were synthesized by a conventional solid-state reaction. Their luminescent properties were characterized by using powder X-ray diffraction, photoluminescence excitation and emission spectra, lifetime, and temperature dependent emission spectra, respectively. The NaSrPO4:Eu2+,Tb3+,Na+ phosphor showed an intense broad excitation band between 250 and 430 nm, which was in agreement with the near-UV chip (350–420 nm), and it exhibited two dominating emission bands at 445 and 545 nm, corresponding to the allowed 4f65d1→4f7(8S7/2) transition of Eu2+ ion and the 5D47F5 transition of Tb3+ ion, respectively. The emission intensity and lifetime of Eu2+ ion decreased with the increasing concentration of Tb3+ ion, which strongly indicated that an effective energy transfer occurred from Eu2+ to Tb3+ in NaSrPO4 host. The principle of the energy transfer should be the combined effect of the non-radiative resonant energy transfer and the phonon-assisted non-radiative process.  相似文献   

17.
The red-emitting phosphor In2(MoO4)3:Eu3+ with cubic crystal structure was synthesized by a conventional solid-state reaction technique and its photoluminescence properties were investigated. The prepared phosphor can be efficiently excited by ultraviolet (395 nm) and blue (466 nm) light. The emission spectra of the phosphor manifest intensive red-emitting lines at 612 nm due to the electric dipole 5D07F2 transitions of Eu3+. The chromaticity coordinates of x=0.63, y=0.35 (λex=395 nm) and x=0.60, y=0.38 (λex=466 nm) are close to the standard of National Television Standard Committee values (NTSC) values. The concentration quenching of In2(MoO4)3:Eu3+ is 40 mol% and the concentration self-quenching mechanism under 466 nm excitation was the dd intereaction. As a result of the strong emission intensity and good excitation, the phosphor In2(MoO4)3:Eu3+ is regarded as a promising red-emitting conversion material for white LEDs.  相似文献   

18.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

19.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

20.
In this work, structural, thermal and optical properties of Eu3+ doped TeO2–La2O3–TiO2 glass were investigated. The differential scanning calorimetry (DSC) measurements reveal an important stability factor ΔT=143.52 K, which indicates the good thermal and mechanical stabilities of tellurite glass. From the absorption spectrum, the optical band gap was found to be direct with Eg=3.23 eV. The temperature dependences of photoluminescence (PL) properties of Eu-doped and Eu–Tb codoped tellurite glass are investigated. As the temperature increases from 7 to 300 K, both the PL intensity and the PL lifetime relative to the 5D27F0 are nearly constant below 230 K and then an enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from charged intrinsic defects states to Eu3+ energy levels.By co-doping tellurite glasses with Eu and Tb, a strong Eu3+ PL enhancement is shown due to excitation transfer from Tb3+ and intrinsic defects to Eu ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号