首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the solution of high-frequency scattering problems in two dimensions, modeled by an integral equation on the boundary of a smooth scattering object. We devise a numerical method to obtain solutions on only parts of the boundary with little computational effort. The method incorporates asymptotic properties of the solution and can therefore attain particularly good results for high frequencies. We show that the integral equation in this approach reduces to an ordinary differential equation.  相似文献   

2.
This paper presents a variational formulation which treats initial value problems and boundary problems in a unified manner. The basic ingredients of this theory are (1) adjoint variable and (2) unconstrained variations. It is an extension of the finite element unconstrained variational formulation used previously in solving several non-conservative stability problems. The technique which makes this extension possible is described. This formulation thus enables one to adapt such numerical techniques as the finite element method, which has had great success and popularity for solution of boundary value problems, for solutions of initial value problems as well. These formulations are given here for a forced vibration problem, a heat (mass) transfer problem and a wave propagation problem. Numerical calculations in conjunction with finite elements for two specific examples are obtained and compared with known exact solutions.  相似文献   

3.
A detailed numerical analysis of the boundary value problem resulting from the most general Skyrme type lagrangian containing up to quartic terms in field gradients is presented. The additional parameters in the lagrangian can be related to pion-pion scattering lengths. It is found that solutions to the boundary value problem does not exist for all values of the parameters and in particular, for the values predicted from pion-pion scattering data. Physical quantities of the nucleon are calculated for the highest possible values of the parameters admitting a solution and are compared with the corresponding values for the Skyrme model and experimental values.  相似文献   

4.
We present some remarks to the general theory of strongly elliptic second-order systems in bounded Lipschitz domains. The most important remarks are related to the use of the ??Weyl decomposition?? of the solution space. In particular, we suggest a simplified approach to the unique choice of the right-hand side of the system and the conormal derivative in the Neumann problem and obtain two-sided a priori estimates for the solutions. We consider the transmission problem for two systems in domains with a common Lipschitz boundary without the assumption that the coefficients do not have jumps on that boundary. We construct examples of strongly elliptic second-order systems for which the Neumann problem is not Fredholm.  相似文献   

5.
This paper concerns the initial boundary value problems for some systems of quasilinear hyperbolic conservation laws in the space of bounded measurable functions. The main assumption is that the system under study admits a convex entropy extension. It is proved that then any twicely differentiable entropy fluxes have traces on the boundary if the bounded solutions are generated by either Godunov schemes or by suitable viscous approximations. Furthermore, in the case that the weak interior solutions are generated by Godunov schemes, any Lipschitz continuous entropy fluxes corresponding to convex entropies have traces on the boundary and the traces are bounded above by computable numerical boundary values. This in particular gives a trace formula for the flux functions in terms of the numerical boundary data. We also investigate the formulation of boundary conditions for systems of hyperbolic conservation laws. It is shown that the set of expected boundary values derived from the viscous approximation contains the one derived in terms of the boundary Riemann problems, and the converse is not true in general. The general theory is then applied to some specific examples. First, several new facts are obtained for convex scalar conservation laws. For example, we give example which show that Godunov schemes produce numerical boundary layers. It is shown that any continuous functions of density have traces on the boundary (instead of only entropy fluxes). We also obtain interior and boundary regularity of the weak solutions for bounded measurable initial and boundary data. A generalized Oleinik entropy condition is also obtained. Next, we prove the existence of a weak solution to the initial-boundary value problem for a family of × quadratic system with a uniformly characteristic boundary condition. Received: 23 July 1996 / Accepted: 28 October 1996  相似文献   

6.
《Nuclear Physics B》1995,437(1):83-103
We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies.  相似文献   

7.
The paper addresses a class of boundary value problems in some self-similar ramified domains, with the Laplace or Helmholtz equations. Much stress is placed on transparent boundary conditions which allow the solutions to be computed in subdomains. A self similar finite element method is proposed and tested. It can be used for numerically computing the spectrum of the Laplace operator with Neumann boundary conditions, as well as the eigenmodes. The eigenmodes are normalized by means of a perturbation method and the spectral decomposition of a compactly supported function is carried out. Finally, a numerical method for the wave equation is addressed.  相似文献   

8.
The applicability of the Dirichlet-to-Neumann technique coupled with finite difference methods is enhanced by extending it to multiple scattering from obstacles of arbitrary shape. The original boundary value problem (BVP) for the multiple scattering problem is reformulated as an interface BVP. A heterogenous medium with variable physical properties in the vicinity of the obstacles is considered. A rigorous proof of the equivalence between these two problems for smooth interfaces in two and three dimensions for any finite number of obstacles is given. The problem is written in terms of generalized curvilinear coordinates inside the computational region. Then, novel elliptic grids conforming to complex geometrical configurations of several two-dimensional obstacles are constructed and approximations of the scattered field supported by them are obtained. The numerical method developed is validated by comparing the approximate and exact far-field patterns for the scattering from two circular obstacles. In this case, for a second order finite difference scheme, a second order convergence of the numerical solution to the exact solution is easily verified.  相似文献   

9.
The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 105105. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries.  相似文献   

10.
We study the numerical solution of the Fokker-Planck equation. This equation gives a good approximation to the radiative transport equation when scattering is peaked sharply in the forward direction which is the case for light propagation in tissues, for example. We derive first the numerical solution for the problem with constant coefficients. This numerical solution is constructed as an expansion in plane wave solutions. Then we extend that result to take into account coefficients that vary spatially. This extension leads to a coupled system of initial and final value problems. We solve this system iteratively. Numerical results show the utility of this method.  相似文献   

11.
We describe a numerical procedure for the construction of quadrature formulae suitable for the efficient discretization of boundary integral equations over very general curve segments. While the procedure has applications to the solution of boundary value problems on a wide class of complicated domains, we concentrate in this paper on a particularly simple case: the rapid solution of boundary value problems for Laplace’s equation on two-dimensional polygonal domains. We view this work as the first step toward the efficient solution of boundary value problems on very general singular domains in both two and three dimensions. The performance of the method is illustrated with several numerical examples.  相似文献   

12.
Guofei Zhang 《中国物理 B》2022,31(11):110201-110201
We investigate the inverse scattering transform for the Schrödinger-type equation under zero boundary conditions with the Riemann-Hilbert (RH) approach. In the direct scattering process, the properties are given, such as Jost solutions, asymptotic behaviors, analyticity, the symmetries of the Jost solutions and the corresponding spectral matrix. In the inverse scattering process, the matrix RH problem is constructed for this integrable equation base on analyzing the spectral problem. Then, the reconstruction formula of potential and trace formula are also derived correspondingly. Thus, N double-pole solutions of the nonlinear Schrödinger-type equation are obtained by solving the RH problems corresponding to the reflectionless cases. Furthermore, we present a single double-pole solution by taking some parameters, and it is analyzed in detail.  相似文献   

13.
In this paper, an approach for modeling the scattering from azimuthally symmetric bathymetric features is described. These features are useful models for small mounds and indentations on the seafloor at high frequencies and seamounts, shoals, and basins at low frequencies. A bathymetric feature can be considered as a compact closed region, with the same sound speed and density as one of the surrounding media. Using this approach, a number of numerical methods appropriate for a partially buried target or facet problem can be applied. This paper considers the use of wavefield superposition and because of the azimuthal symmetry, the three-dimensional solution to the scattering problem can be expressed as a Fourier sum of solutions to a set of two-dimensional scattering problems. In the case where the surrounding two half spaces have only a density contrast, a semianalytic coupled mode solution is derived. This provides a benchmark solution to scattering from a class of penetrable hemispherical bosses or indentations. The details and problems of the numerical implementation of the wavefield superposition method are described. Example computations using the method for a simple scattering feature on a seabed are presented for a wide band of frequencies.  相似文献   

14.
We describe the construction of a collection of quadrature formulae suitable for the efficient discretization of certain boundary integral equations on a very general class of two-dimensional domains with corner points. The resulting quadrature rules allow for the rapid high-accuracy solution of Dirichlet boundary value problems for Laplace’s equation and the Helmholtz equation on such domains under a mild assumption on the boundary data. Our approach can be adapted to other boundary value problems and certain aspects of our scheme generalize to the case of surfaces with singularities in three dimensions. The performance of the quadrature rules is illustrated with several numerical examples.  相似文献   

15.
In this research work we introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker–Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant–Friedrichs–Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker–Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numerical approximations of the solution of the relativistic heat equation for a set of examples in one and two dimensions including continuous initial data that develops jump discontinuities in finite time. We perform the numerical experiments through a class of explicit high order accurate conservative and stable numerical schemes and a semi-implicit nonlinear Crank–Nicolson type scheme.  相似文献   

16.
Time-harmonic exterior acoustic problems are solved by using a singular meshless method in this paper. It is well known that the source points cannot be located on the real boundary, when the method of fundamental solutions (MFS) is used due to the singularity of the adopted kernel functions. Hence, if the source points are right on the boundary the diagonal terms of the influence matrices cannot be derived. Herein we present an approach to obtain the diagonal terms of the influence matrices of the MFS for the numerical treatment of exterior acoustics. By using the regularization technique to regularize the singularity and hypersingularity of the proposed kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. We also maintain the prominent features of the MFS, that it is free from mesh, singularity, and numerical integration. The normal derivative of the fundamental solution of the Helmholtz equation is composed of a two-point function, which is one of the radial basis functions. The solution of the problem is expressed in terms of a double-layer potential representation on the physical boundary based on the potential theory. The solutions of three selected examples are used to compare with the results of the exact solution, conventional MFS, boundary element method, and Dirichlet-to-Neumann finite element method. Good numerical performance is demonstrated by close agreement with other solutions.  相似文献   

17.
In this paper we demonstrate uniqueness of a transparent obstacle, of coefficients of rather general boundary transmission condition, and of a potential coefficient inside obstacle from partial Dirichlet-to Neumann map or from complete scattering data at fixed frequency. The proposed transmission problem includes in particular the isotropic elliptic equation with discontinuous conductivity coefficient. Uniqueness results are shown to be optimal. Hence the considered form can be viewed as a canonical form of isotropic elliptic transmission problems. Proofs use singular solutions of elliptic equations and complex geometrical optics. Determining an obstacle and boundary conditions (i.e. reflecting and transmitting properties of its boundary and interior) is of interest for acoustical and electromagnetic inverse scattering, for modeling fluid/structure interaction, and for defects detection.  相似文献   

18.
The analytic solution (in the form of the Neumann series) has been derived for the problem of computing the heat flux in a planar channel in the presence of a pressure gradient parallel with the walls (in the problem of planar Poiseuille flow) within the framework of the kinetic approach for arbitrary values of the Prandtl number. The ellipsoidal-statistical model of the Boltzmann kinetic equation is used as the governing equation, and the model of diffuse reflection is used as the boundary condition. The conducted numerical analysis of final expressions obtained in the present work showed a substantial dependence of the heat flux on the value of the Prandtl number of gas for channels whose thickness is comparable with the mean free path of gas molecules.  相似文献   

19.
The experimental method suggested suppose the studying of energy characteristics of slot bridge (SB) cells in the multi mode operating regime based on the preliminary numerical investigation of scattering resonant characteristics of SB (solution of boundary value problem and investigation of eigen frequencies and relevant field modes). The configuration of experimental model of SB cell is computed accordingly to required frequency band and preliminary information about dielectric parameters of materials chosen for tests. Ethanol scattering characteristics of SB cell are computed by software, developed on the base of rigorous solution of the boundary value problem, providing numerical data with any required accuracy.  相似文献   

20.
We develop the Riemann?CHilbert (RH) approach to scattering problems in elastic media. The approach is based on the RH method introduced in the 1990s by Fokas (A unified approach to boundary value problems, CBMS-SIAM, 2008) for studying boundary problems for linear and integrable nonlinear PDEs. A suitable Lax pair formulation of the elastodynamic equation is obtained. The integral representations derived from this Lax pair are applied to Rayleigh wave propagation in an elastic half space and quarter space. The latter problem is reduced to the analysis of a certain underdetermined RH problem. We show that the problem can be re-formulated as a well-determined vector Riemann?CHilbert problem with a shift posed on a torus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号