首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

2.
The palladium-substituted tungstoantimonate(III) [Cs(2)Na(H(2)O)(10)Pd(3)(alpha-SbW(9)O(33))(2)](9-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)KNa(5)[Cs(2)Na(H(2)O)(10)Pd(3)(SbW(9)O(33))(2)].16.5H(2)O, which crystallizes in the monoclinic system, space group P2(1)/m, with a = 13.3963(13) A, b = 19.5970(19) A, c = 18.1723(17) A, beta = 100.416(2) degrees, and Z = 2. Polyanion 1 represents the first structurally characterized palladium(II)-substituted polyoxometalate. The title polyoxoanion consists of two (alpha-Sb(III)W(9)O(33)) Keggin moieties linked via three Pd(2+) ions leading to a sandwich-type structure. The palladium centers are equivalent, and they are coordinated in a square-planar fashion. The central belt of 1 contains also one sodium and two cesium ions which reduces the symmetry of the polyanion to C(2)(v)(). Polyanion 1 was synthesized in good yield by reaction of Pd(CH(3)COO)(2) with Na(9)[SbW(9)O(33)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium gives essentially the same characteristics as those observed for the deposition of Pd(0) on the glassy carbon electrode surface from Pd(2+) solutions. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. The particularly sharp hydrogen sorption/desorption pattern indicates the excellent quality of the Pd(0) deposit from polyanion 1.  相似文献   

3.
The palladium(II)-substituted tungstosilicate [Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)](9)(-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)K(2)Na(4)[Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)].5H(2)O (1a), which crystallizes in the monoclinic system, space group P2(1)/n, with a = 16.655(3) A, b = 19.729(4) A, c = 25.995(5) A, beta = 95.46(3) degrees , and Z = 4. Polyanion 1represents the first structurally characterized palladium(II)-substituted tungstosilicate. The title polyanion consists of two (A-alpha-SiW(9)O(34)) Keggin moieties linked via a [WO(H(2)O)](4+) group and two equivalent, square-planar Pd(2+) ions leading to a sandwich-type structure with C(2)(v) symmetry. The central belt of 1 contains also one potassium and two cesium ions. Polyanion 1 was synthesized by reaction of Pd(CH(3)COO)(2) with K(10)[A-alpha-SiW(9)O(34)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium shows a Pd(0) deposition process on the glassy carbon electrode surface. The corresponding wave and that of tungsten redox processes could be separated clearly during the first few runs before their merging into a broad composite wave. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. As judged from hydrogen sorption/desorption pattern, the quality of the film deposited from polyanion 1 is better than that of a film deposited directly from Pd(2+) solutions.  相似文献   

4.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

5.
The reaction of the molecular transition metal iodate, Cs[CrO(3)(IO(3))], with UO(3) under mild hydrothermal conditions provides access to a new low-dimensional, mixed-metal U(VI) compound, Cs(2)[(UO(2))(CrO(4))(IO(3))(2)] (1). The structure of 1 is quite unusual and consists of one-dimensional (1)(infinity)[(UO(2))(CrO(4))(IO(3))(2)](2-) ribbons separated by Cs(+) cations. These ribbons are formed from [UO(7)] pentagonal bipyramids that contain a uranyl core, [CrO(4)] tetrahedra, and both monodentate and bridging iodate anions. Crystallographic data: 1, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4 (T = 193 K).  相似文献   

6.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

7.
Three new palladium compounds, PdSeO3, PdSe2O5, and Na2Pd(SeO4)2, containing selenium oxoanions of both Se(IV) and Se(VI) have been prepared under mild hydrothermal conditions. PdSe2O5 and Na2Pd(SeO4)2 both possess one-dimensional structures. Within the structure of PdSe2O5, [PdO4] square planar building blocks are joined together through diselenite, Se2O52-, anions, and form a zigzag chain along the c axis. In Na2Pd(SeO4)2, [PdO4] units are connected by two selenate, SeO42-, anions, and extend along the a axis to form a [Pd(SeO4)2]2- chain. Na+ cations reside in the space between the [Pd(SeO4)2]2- chains and act as counter cations. Unlike above two compounds, PdSeO3 exhibits a layered structure. In the structure of PdSeO3, [PdO4] units are connected to each other by corner-sharing and form a zigzag chain along the b axis. The chains are further joined together by tridentate selenite, SeO32-, anions to form layers in the [ab] plane that stack along the c axis. Crystallographic data: (193 K; Mo Kalpha, lambda=0.71073 A): PdSeO3, monoclinic, space group P21/m, a=3.8884(5) A, b=6.4170(8) A, c=6.1051(7) A, beta=96.413(2) degrees, V=151.38(3) A3, Z=2; PdSe2O5, monoclinic, space group C2/c, a=12.198(2) A, b=5.5500(8) A, c=7.200(1) A, beta=107.900(2) degrees , V=463.8(1) A3, Z=4; Na2Pd(SeO4)2, triclinic, space group P, a=4.9349(11) A, b=5.9981(13) A, c=7.1512 (15) A, alpha=73.894(4) degrees, beta=86.124(4) degrees, gamma=70.834(4) degrees, V=192.03(7) A3, Z=1.  相似文献   

8.
Chen X  Huang X  Li J 《Inorganic chemistry》2001,40(6):1341-1346
Three novel metal polytellurides Rb(4)Hg(5)(Te(2))(2)(Te(3))(2)Te(3) (I), [Zn(en)(3)](4)In(16)(Te(2))(4)(Te(3))Te(22) (II), and K(2)Cu(2)(Te(2))(Te(3)) (III) have been prepared by solvothermal reactions in superheated ethylenediamine at 160 degrees C. Their crystal structures have been determined by single-crystal X-ray diffraction techniques. Crystal data for I: space group Pnma, a = 9.803(2) A, b = 9.124(2) A, c = 34.714(7) A, Z = 4. Crystal data for II: space group C2/c, a = 36.814(7) A, b = 16.908(3) A, c = 25.302(5) A, beta = 128.46(3) degrees, Z = 4. Crystal data for III: space group Cmcm, a = 11.386(2) A, b = 7.756(2) A, c = 11.985(2) A, Z = 4. The crystal structure of I consists of 1D infinite ribbons of [Hg(5)(Te(2))(2)(Te(3))(2)Te(3)](4-), which are composed of tetrahedral HgTe(4) and trigonal HgTe(3) units connected through the bridging Te(2-), (Te(2))(2-), and (Te(3))(2-) ligands. II is a layered compound containing InTe(4) tetrahedra that share corners and edges via Te, Te(2), and Te(3) units to form a 2D slab that contains relatively large voids. The [Zn(en)(3)](2+) template cations are filled in these voids and between the slabs. The primary building blocks of III are CuTe(4) tetrahedra that are linked by intralayer (Te(3))(2-) and interlayer (Te(2))(2-) units to form a 3D network with open channels that are occupied by the K(+) cations. All three compounds are rare polytelluride products of solvothermal reactions that contain both Te(2) and Te(3) fragments with unusual metal-tellurium coordination.  相似文献   

9.
Wang Y  Yu J  Pan Q  Du Y  Zou Y  Xu R 《Inorganic chemistry》2004,43(2):559-565
A 0D vanadium borophosphate [Co(en)(3)](2)[V(3)P(3)BO(19)][H(2)PO(4)].4H(2)O (1) and two 1D vanadium oxides [Co(en)(3)][V(3)O(9)].H(2)O (2) and [Co(dien)(2)][V(3)O(9)].H(2)O (3) have been synthesized hydrothermally from the reaction mixture of V(2)O(5)-H(3)PO(4)-H(3)BO(3)-CoCl(2)-R-H(2)O at 110 degrees C (R: en or dien). The complex cations Co(en)(3)(3+) and Co(dien)(2)(3+) are cooperatively organized in the reaction medium to play a structure-directing role in the formation of the inorganic clusters and chains. The structures are determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of 1 contains isolated [V(3)P(3)BO(19)](5)(-) cluster anions, H(2)PO(4)(-) anions, racemic Co(en)(3)(3+) cations, and H(2)O molecules, which form a complex H-bond network. 2 and 3 both contain chains of corner-sharing VO(4) tetrahedra running along the 2(1) screw axis. The complex cations located in the interchain region interact with the chains through H-bonds. 2 is crystallized in an enantiomorphic space group and only one enantiomer of Co(en)(3)(3+) is involved in the structure. Crystal data: 1, monoclinic, C2/c, a = 32.8492(14) A, b = 11.9601(3) A, c = 22.6001(7) A, beta = 108.9630(8) degrees, Z = 8; 2, orthorhombic, P2(1)2(1)2(1), a = 8.1587(16) A, b = 12.675(3) A, c = 18.046(4) A, Z = 4; 3, monoclinic, P2(1)/c, a = 16.1663(10) A, b = 8.7028(3) A, c = 13.9773(5) A, beta = 103.1340(18) degrees, Z = 4.  相似文献   

10.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

11.
The reactions of UO(3) with acidic aqueous chloride solutions resulted in the formation of two new polymeric U(VI) compounds. Single crystals of Cs(2)[(UO(2))(3)Cl(2)(IO(3))(OH)O(2)].2H(2)O (1) were formed under hydrothermal conditions with HIO(3) and CsCl, and Li(H(2)O)(2)[(UO(2))(2)Cl(3)(O)(H(2)O)] (2) was obtained from acidic LiCl solutions under ambient temperature and pressure. Both compounds contain pentagonal bipyramidal coordination of the uranyl dication, UO(2)(2+). The structure of 1 consists of infinite [(UO(2))(3)Cl(2)(IO(3))(mu(3)-OH)(mu(3)-O)(2)](2-) ribbons that run down the b axis that are formed from edge-sharing pentagonal bipyramidal [UO(6)Cl] and [UO(5)Cl(2)] units. The Cs(+) cations separate the chains from one another and form long ionic contacts with terminal oxygen atoms from iodate ligands, uranyl oxygen atoms, water molecules, and chloride anions. In 2, edge-sharing [UO(3)Cl(4)] and [UO(5)Cl(2)] units build up tetranuclear [(UO(2))(4)(mu-Cl)(6)(mu(3)-O)(2)(H(2)O)(2)](2-) anions that are bridged by chloride to form one-dimensional chains. These chains are connected in a complex network of hydrogen bonds and interactions of uranyl oxygen atoms with Li(+) cations. Crystal data: 1, orthorhombic, space group Pnma, a = 8.2762(4) A, b = 12.4809(6) A, c = 17.1297(8) A, Z = 4; 2, triclinic, space group P1, a = 8.110(1) A, b = 8.621(1) A, c = 8.740(1) A, Z = 2.  相似文献   

12.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

13.
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.  相似文献   

14.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

15.
Two noncentrosymmetric quaternary tin chalcoarsenates, Cs(2)SnAs(2)S(9) (1) and Cs(2)SnAs(2)Se(9) (2), were synthesized by the polychalcoarsenate flux method. Compound 1 crystallizes in the orthorhombic space group Pmc2(1) with a = 7.386(3) A, b = 14.614(5) A, c = 14.417(5) A, and Z = 4. Compound 2 crystallizes in the monoclinic space group P2(1) with a = 7.715(5) A, b = 17.56(1) A, c = 7.663(5) A, beta = 115.86(1) degrees, and Z = 2. Both structures contain the same tin-centered molecular cluster anions [Sn[AsQ(2)(Q(2))][AsQ(Q(2))(2)]](2)(-) (Q = S, Se) separated by Cs cations. The Sn(4+) ion is in a distorted octahedral environment coordinated by two different pyramidal-shaped tridentate ligands, [AsQ(2)(Q(2))](3)(-) and [AsQ(Q(2))(2)](3)(-). These compounds absorb visible light at energies above 1.98 and 1.45 eV for 1 and 2, respectively. Differential thermal analysis revealed that 1 melts at 350 degrees C and on cooling gives a glass. The glass recrystallizes at 268 degrees C upon subsequent heating. Compound 2 melts at 258 degrees C.  相似文献   

16.
Two organically-templated layered uranium(IV) fluorooxalates, (H(4)TREN)[U(2)F(6)(C(2)O(4))(3)].4H(2)O (1) (TREN = tris(2-aminoethyl)amine) and (H(4)APPIP)[U(2)F(6)(C(2)O(4))(3)].4H(2)O (2) (APPIP = 1,4-bis(3-aminopropyl)piperazine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Both structures consist of anionic [U(2)F(6)(C(2)O(4))(3)](4-) layers separated by organic ammonium cations and lattice water molecules. The UF(3)O(6) polyhedra are connected by oxalate ligands in different ways within the layers. They are the first examples of organically-templated uranium fluorooxalates. Crystal data for compound 1 follow: monoclinic, P2(1)/c (No. 14), a = 19.1563(5) A, b = 8.9531(2) A, c = 16.6221(4) A, beta = 114.633(1) degrees, and Z = 4. Crystal data for compound are the same as those for 1 except a = 10.3309(8) A, b = 15.564(1) A, c = 17.537(1) A, and beta = 95.430(4) degrees.  相似文献   

17.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

18.
The reaction of UO(3) with V(2)O(5) and KIO(4) under mild hydrothermal conditions produces K(2)[(UO(2))(2)(VO)(2)(IO(6))(2)O].H(2)O (1) in the form of orange acicular crystals. The structure of 1 consists of UO(6), VO(6), and IO(6) distorted octahedra that are assembled into a polar, open-framework structure. The distorted VO(6) and IO(6) octahedra edge-share to form chains that run down the c-axis. Each VO(6) octahedron also shares a vertex with an adjacent vanadium atom to link the chains together into a ribbon. The IO(6) units also partake in corner-sharing with the UO(6) units to create interconnected elliptical tubes. The major channels in 1 are filled with K(+) cations and water molecules. The polarity of this compound is caused by alignment of distorted vanadyl hexaoxoiodate ribbons and UO(6) trapezoidal bipyramids resulting in a large second-harmonic generation response of 300 times that of alpha-quartz. Crystallographic data: 1, orthorhombic, space group Pba2, a = 9.984(2) A, b = 16.763(3) A, c = 4.977(1) A, Z = 4 (T = 193 K).  相似文献   

19.
Chen CS  Chiang RK  Kao HM  Lii KH 《Inorganic chemistry》2005,44(11):3914-3918
A new uranium(VI) silicate, Cs2(UO2)(Si2O6), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. It crystallizes in the orthorhombic space group Ibca (No. 73) with a = 15.137(1) A, b = 15.295(1) A, c = 16.401(1) A, and Z = 16. Its structure consists of corrugated achter single chains of silicate tetrahedra extending along the c axis linked together via corner-sharing by UO6 tetragonal bipyramids to form a 3-D framework which delimits 8- and 6-ring channels. The Cs+ cations are located in the channels or at sites between channels. The 29Si and 133Cs MAS NMR spectra are consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectra are assigned. Variable-temperature in situ powder X-ray diffraction study of the hydrate Cs2(UO2)(Si2O6) x 0.5H2O indicates that the framework structure is stable up to 800 degrees C and transforms to the structure of the title compound at 900 degrees C. A comparison of related uranyl silicate structures is made.  相似文献   

20.
The X-ray structure of Cs(2)[Ni(CN)(4)].H(2)O and the polarized single-crystal UV absorbance spectra of Cs(2)[Ni(CN)(4)].H(2)O and Cs(2)[Pt(CN)(4)].H(2)O are presented. The two complexes are isostructural, with helical arrangements of M(CN)(4)(2)(-) ions in which there is moderate metal-metal electronic perturbation resulting in a spectral red shift from solution in the UV absorbance spectra. In addition, we have modeled the nickel system with a ZINDO calculation of a three-molecule segment of the helix and have found remarkably good agreement with experiment, including excellent reproduction of the red shift. Crystal data are as follows: Cs(2)[Ni(CN)(4)].H(2)O, hexagonal, space group P6(1), a = 9.5260(10) A, c = 19.043(2) A, V = 1496.5(3) A(3), T = 100 K, Z = 6, 4335 observed data, R = 0.016, R(w) = 0.034.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号