首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of an external electric field on water clusters of the (H2O)n type, with [1 n 15], in the ground state was analyzed at the B3LYP/cc-pVTZ level of theory. The calculations showed that an external electric field changes the number of hydrogen bonds, reduces the cluster sizes and increases the strength of the inter-cluster hydrogen bonds. The particular symmetry of the cluster and the null dipole moment in these specific configurations suggest that their stability can be associated with a perfect alignment of the water molecules, maximizing attractive electrostatic interactions caused by changes in the charge distribution of the clusters.  相似文献   

2.
In the framework of investigation of active and stable electrocatalysts for fuel cells, the hydrogen migration by relay with the consecutive formation of H2O molecules in the O2/Pt19/SnO2/H2·nH2O → O/Pt19/SnO2·nH2O + H2O system was simulated. The simulations were performed by the density functional theory (DFT) method with the generalized gradient adjustment (GGA=PBE) under periodic boundary conditions in the projector augmented plane wave (PAW) basis set with a pseudo-potential using the VASP program package. At the cathode on the platinum cluster surface, the oxygen molecules without a barrier form peroxide complexes that dissociate with an energy decrease. The protons transferred via the proton-conducting channels from the anode to cathode form first OH groups bound to the platinum cluster and then H2O molecules that are easily separated from the cluster (~0.2 eV). The proton transfer process proceeds by relay and involves several water molecules.  相似文献   

3.
The kinetics of reactions of nickel clusters with hydrogen and deuterium are studied in a laser-vaporization cluster source coupled to a continuous-flow reactor. The abslute rate constants for the addition of the first H2 (D2) molecule to nickel clusters Ni n (n=7→36 for H2 andn=7→60 for D2) have been measured. Rate constants are found to be only weakly dependent onn forn≧14, showing a gradual increase with size that scales approximately withn (2/3), i.e., the cluster geometrical cross section. Reaction probabilities for clusters in this size range are approximately 0.6 for H2 and 0.3 for D2. Belown=14, there is a stronger dependence of reactivity on size, with Ni9 being far less reactive than any other cluster studied. These results are compared to bulk nickel studies, and a discussion of possible correlation of reactivity to cluster structure is presented.  相似文献   

4.
We have measured the photoelectron-spectra of I? (H2O)n clusters in the size range n=1–60. We have found that the first six water molecules form a solvation layer with an average 0.35 eV electrostatic stabilization of the anion. At larger cluster sizes the electrostatic stabilization of water does not fit a continuous dielectric solvent. The most stable structures of the clusters consist of internally solvated anions. In the size range n=34–40 we have found evidence for existence of cluster structures with surface solvated anions.  相似文献   

5.
A near atmospheric pressure ion source with a β-emitter as electron source is used to inject ions into a supersonic water expansion. Cluster ions of the structure (H2O)+ n have been observed forn up to 8. Forn>3 these cluster ions cannot be obtained by ionization of water clusters in vacuum, but they can be grown in the cold environment of a supersonic beam. Extremely clean conditions are necessary for the observation of these cluster ions. The data can be explained by assuming that the local potential minimum calculated for the (H2O) n + ,n=2, potential hypersurface exists also forn>2. The model developed to explain these data is similar to that proposed for ionized rare gas clusters.  相似文献   

6.
Various properties of water clusters in the n = 2–34 size regime with the change of cluster size have been systemically explored based on the newly developed flexible-body and charge-fluctuating ABEEM/MM water potential model. The ABEEM/MM water model is to take ABEEM charges of all atoms, bonds, and lone-pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The computed correlating properties characterizing water clusters (H2O) n (n = 2–34) include optimal structures, structural parameters, ABEEM charge distributions, binding energies, hydrogen bonds, dipole moments, and so on. The study of optimal structures shows that the ABEEM/MM model can correctly predict the following important structural features, such as the transition from two-dimensional (from dimer to pentamer) to three-dimensional (for clusters larger than the hexamer) structures at hexamer region, the transition from cubes to cages at dodecamer (H2O)12, the transition from all-surface (all water molecules on the surface of the cluster) to one water-centered (one water molecule at the center of the cluster, fully solvated) structures at (H2O)17, the transition from one to two internal molecules in the cage at (H2O)33, and so on. The first three structural transitions are in good agreement with those obtained from previous work, while the fourth transition is different from that identified by Hartke. Subsequently, a systematic investigation of structural parameters, ABEEM charges, energetic properties, and dipole moments of water clusters with increasing cluster size can provide important reference for describing the objective trait of hydrogen bonds in water cluster system, and also provide a strong impetus toward understanding how the water clusters approach the bulk limit.  相似文献   

7.
We have studied the break-up of accelerated hydrogen cluster ions passing through an argon gas target. The absolute dissociation cross section has been measured for a wide variety of H n + (odd masses only) cluster ions, withn between 5 and 23 and with projectile velocities ranging from 1.5 to 5 × 108 cm/s. We discuss the dissociation processes and the dependence of their cross-sections upon the cluster mass and velocity.  相似文献   

8.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

9.
Hydration of alkylammonium ions under nonanalytical electrospray ionization conditions has been found to yield cluster ions with more than 20 water molecules associated with the central ion. These cluster ion species are taken to be an approximation of the conditions in liquid water. Many of the alkylammonium cation mass spectra exhibit water cluster numbers that appear to be particularly favorable, i.e., “magic number clusters” (MNC). We have found MNC in hydrates of mono- and tetra-alkyl ammonium ions, NH3(C m H2m+1)+(H2O) n , m=1–8 and N(C m H2m+1) 4 + (H2O) n , m=2–8. In contrast, NH2(CH3) 2 + (H2O) n , NH(CH3) 3 + (H2O) n1 and N(CH3) 4 + (H2O) n do not exhibit any MNC. We conjecture that the structures of these magic number clusters correspond to exohedral structures in which the ion is situated on the surface of the water cage in contrast to the widely accepted caged ion structures of H3O+(H2O) n and NH 4 + (H2O) n .  相似文献   

10.
The hydrogen-bonded (N2H4) n clusters and the van der Waals (OCS) n clusters are size selected in a scattering experiment with a He beam up to the cluster sizen=6. By measuring the angular distributions of the scattered clusters the complete fragmentation pattern of electron impact ionization is obtained. For Hydrazine the two main fragment masses are the protonated species (N2H4) n?1H+ and with somewhat weaker intensities also the nominal ion mass (N2H4) n + . The largest intensity is observed for the monomer ion N2H 4 + to which clusters up ton=5 fragment. For carbonylsulfide, completely different results are obtained. Aside from the fragments of the OCS monomer and the van der Waals cluster fragments (OCS) 2 + and (OCS) 3 + signals at mass S 2 + , S 3 + and S2OCS+ are detected. This indicates a fast chemical reaction in the cluster according to: S + OCS → CO + S2 which occurs for clusters of sizen ≥ 2. Peaks at S 3 + and S2OCS+ are seen for the first time forn ≥ 5 according to a further reaction of S2 in the cluster.  相似文献   

11.
Rate constants, in some cases also activation energies and energy dependences, were measured for the capture of low-energy electrons by the molecules CCl4, CHCl3, CH2Cl2, CnH2n+1 Cl(n = 1 to 4), C2H3Cl, COCl2, NOCl, CNCl and Cl2 Potential energy curves were calculated for a number of negative ions.For ineffective scavengers the possibility of contributing scattering effects on the observed changes in signal intensity upon electron energy variation is indicated. In CCl4 the observed energy dependence suggests the existence of intermediate negative ions. For Cl2 good agreement was obtained between the calculated curves based on experimental data for electron capture and a recent self-consistent field analysis.  相似文献   

12.
13.
Structures and energetic characteristics of Li(H2O) n and Li+(H2O) n clusters with n = 1–6, 19, and 27 determined in the second order of the Møller-Plesset perturbation theory with 6–31++G(d,p) basis set are analyzed. The electron density redistribution, which takes place upon the electron addition to a Li+(H2O) n cluster, is found to be provided by hydrogen-bonded water molecules: initially almost neutral molecules, which are most distant from lithium, become negatively charged. The calculated energies of the electron capture by Li+(H2O) n clusters are approximated with the appropriate electrostatic model, and estimates of the lithium ionization energy in water clusters of various sizes are found. Similar estimates obtained earlier for sodium are made more accurate.  相似文献   

14.
Structures of Na(H2O)n and Na+(H2O)n clusters with n = 1?6, 19, and 28 are determined in the second order of the Møller-Plesset perturbation theory with the use of extended atomic basis set 6–31++G**. It is found that when the number of molecules is sufficient for the formation of two solvation shells around sodium, a continuous hydrogen-bond network is formed in both neutral and charged clusters, and the orientation of each molecule is determined by the balance between interactions with the neighboring water molecules and with the field of the central particle. In the cations, this field is stronger, and up to the third solvation shell, molecules have a predominant orientation with respect to sodium. In the neutral clusters, with an increase in the number of water molecules, the maximum of the electron density distribution of the highest occupied molecular orbital becomes more distant from the sodium nucleus, being shifted toward the cluster surface. The energy of this orbital accordingly decreases in absolute value approaching 22 kcal/mol inmicroparticles. In the charged clusters, the distribution of the positive charge generally correlates with the character of the highest occupied orbital in the neutral systems, so that with an increase in the number of molecules, the atomic charge of sodium decreases and tends to zero as n → ∞. The ionization potential of sodium changes in inverse proportion to the linear size of the cluster, and should not exceed 1.1 eV in watermicroparticles.  相似文献   

15.
High electric fields promote ionization of water, yet relatively little is known about this topic due to the difficulty of generating such fields. The high field capability of field emitter tips enables study of ionization in water layers. Results from this work include ionization fields, water layer morphology, dielectric properties, coadsorbate interactions, cluster distributions of hydrated hydronium ions H+(H2O)m, and field ionization images. These experimental results, combined with theoretical findings, are interpreted in the context of four examples from electrochemistry; double layer structure, hydrogen oxidation, CO oxidation, and oxygen reduction; to reveal the research frontier in interfacial ionization of water.  相似文献   

16.
A discrete centrosymmetric(H2O)20(CH3OH)4 binary cluster was confined in the cavity of a metal-ligand hybrid [Ag4(bpda)2(bpp)4·14H2O·2CH3OH] n(1)(where bpp = 1,3-bis(4-pyridyl)propane and H 2 bpda = 2,2’-biphenyldicarboxylic acid).The novel mixed water-methanol cluster consists of one grail-shaped hexadecameric cluster,four dangling water and four hanging methanol molecules.The(H 2 O) 16 cluster is composed of two pairs of edge-sharing(H2O) 5 rings attached to one(H2O) 4 core with twenty hydrogen bonds.Alternatively,the(H2O) 16 cluster is structurally similar to a complicated hydrocarbon generated by undergoing [2+2] cycloaddition of 1,2,3,4,5,6-hexahydropentalene,which reveals the resemblance between water clusters and organic compounds.  相似文献   

17.
Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn? + (n = 1000–10,000) to form a mixed cluster. The ‘tailored beam’ has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl?, allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H–D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+?or [Mn* + D]+?ions, where n = 1–8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.
Graphical Abstract ?
  相似文献   

18.
The structure of H+n(n = 3, 5, 7, 9, 11) is determined from ab initio MO calculations. The result for H+n(n = 5, 7, 9) obtained by energy optimization in the 4-31G and 4-31G + p bais sets is reasonably explained in terms of a charge-transfer interaction from H2 to H+n?2 site. The orientation of H2 toward the H+9 cluster (D3H) is found to be critically influenced by the basis set adopted.  相似文献   

19.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O) n (n = 7?10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer).  相似文献   

20.
Calculated total, differential and momentum transfer cross sections are reported for the vibrationally elastic scattering of electrons from H2S and PH3 molecules in the range of energy 0.1–50 eV. The scattering process is approximated by two incoherent scatterings caused, separately, by a central field and a long-range electric dipole interaction. The central field is calculated with a spherical approximate molecular wave function, in which the exchange interaction is treated in two ways: (i) exactly within the accuracy of the molecular wave function; (ii) approximately by a local model potential. The scattering by the central field is calculated with partial wave expansion technique, while the scattering by the electric dipole potential is calculated by using the first Born approximation for a rotating dipole model with experimental values of the dipole moments of H2S and PH3. The total cross sections are approximated by the incoherent sum of the cross section due to the central potential and the cross section of 00→10 rotational transition caused by the electric dipole potential. The effects of the polarization interaction are also tested. The contribution of small-angle scattering to the integral cross section is analyzed for these weakly polar molecules with some quantitative comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号