首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three complexes with the formula [Co(Ip)(CuL)(H2O)2] · H2O (I), [Co(Ip)(NiL)(H2O)2] · H2O (II), [Co(CuL)2(Hbtc)(H2O)] (III), (H2Ip = m-isophthalic acid; H2L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien; H3Btc = 1,3,5-benzenetricarboxylic acid) were synthesized and structurally characterized by elemental analysis, IR and UV spectroscopy. Single-crystal X-ray analyses reveal that the complexes I and II contain neutral heterometallic binuclear CoM (for I and II, M = Cu, Ni, respectively) moieties, and complex III contains discrete neutral trinuclear CoCu2 moieties. The structures of IIII consist of two-dimensional supramolecular architecture formed by strong O-H…O intermolecular hydrogen bonds. Furthermore, the magnetic properties of complex I were investigated and discussed in detail.  相似文献   

2.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

3.
The first MnIII complexes with Schiff bases and tricyanomethanide-anion were synthesized: [Mn(salen)C(CN)3(H2O)] (1), [Mn(5-Brsalen)C(CN)3(H2O)] (2), [Mn(salpn)C(CN)3(H2O)] (3), [Mn(3-MeOsalen)C(CN)3(H2O)] (4), [Mn(5-Brsalen)(MeOH)(H2O)][C(CN)3] (5), and [Mn(3-MeOsalpn)(H2O)2][C(CN)3] (6), where SalenH2 is N,N′-bis(salicylidene)ethylenediamine, 5-BrsalenH2 is N,N′-bis(5-bromosalicylidene)ethylenediamine, SalpnH2 is N,N′-bis-(salicylidene)-1,3-diaminopropane, 3-MeOsalenH2 is N,N′-bis(3-methoxysalicylidene)-ethylenediamine, 3-MeOsalpnH2N,N′-bis(3-methoxysalicylidene)-1,3-diaminopropane. The tricyanomethanide anion in complexes 14 acts as a the terminal ligand, whereas in complexes 5 and 6 tricyanomethanide is not coordinated by MnIII and acts as an out-of-sphere counterion. The structures of complexes 14 are characterized by the formation of dimers due to hydrogen bonds between the water molecules and oxygen atoms of the Schiff bases. The Mn...Mn distances inside the dimers are 4.69–5.41 Å. Complex 6 has a zigzag chain structure consisting of the [Mn(3-MeOsalpn)(H2O)2]+ cations bound by double bridging aqua ligands. The study of the magnetic properties of complexes 1, 3, 4, and 6 showed the existence of antiferromagnetic interactions between the MnIII ions through the system of hydrogen bonds.  相似文献   

4.
By using K2[Ni(CN)4] as a building block and two Mn(III) compounds containing bicompartimental Schiff-base ligands as assembling segments, two new cyanide-bridged Ni–Mn complexes of the formula {[Mn(L1)(H2O)]4[Ni(CN)4]}[ClO4]2·2CH3CN (1) and {[Mn(L2)(H2O)]2[Ni(CN)4]}·CH3CN H2O (2) (L1 = N,N’-1,2-propylene-bis(3-methoxysalicylideneiminate; L2 = N,N’-1,2-propylene-bis(3-ethoxysalicylideneiminate) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray analysis. Single Xray diffraction analysis revealed the cationic pentanuclear and neutral trinuclear structures for complexes 1 and 2, respectively, and indicated that the structure of the Schiff-base ligand had obvious influence on the structural types of the target cyanide-bridged complexes. Both cyanide-bridged complexes are self-complementary via coordinated aqua ligand from one complex and the free O4 compartment from the neighboring complex, therefore giving supramolecular two-dimensional network and one-dimensional zig-zag chain structure. Study of magnetic properties revealed weak antiferromagnetic coupling within the Mn2 dimer formed by the intermolecular hydrogen bond.  相似文献   

5.
Complexes of [Mn(MF)2(Cl)2]·2H2O (1), [Fe(MF)2(Cl)2]Cl·4H2O (2), [Ni(MF·HCl)2(Cl)2]·6H2O (3), [Cu(MF·HCl)2(Cl)2] (4), [Zn(MF·HCl)2](NO3)2·6H2O (5), [Cd2(MF·HCl)(Cl)4(H2O)] (6), [Mg(MF·HCl)2(Cl)2]·6H2O (7), [Sr2(MF·HCl)(Cl)4(H2O)] (8), [Ba(MF·HCl)2(Cl)2]·2H2O (9), [Pt(MF)4] (10), [Au(MF)3]Cl3 (11), and [Pd(MF)2]Cl2 (12) were synthesized from Legitional behavior of metformin drug as a diabetic agent. The authenticity of the transition and non-transition metal complexes were characterized by elemental analyses, molar conductivity, (infrared, UV–Vis) spectra, effective magnetic moment in Bohr magnetons, electron spin resonance, thermal analysis, X-ray powder diffraction as well as scanning electron microscopy. Infrared spectral studies as well as elemental analyses revealed the existence of metformin in the base or hydrochloride salt forms in the chelation state acts as a bidentate ligand while the platinum(IV) complex is coordinated through the deprotonation of –NH group. The magnetic and electronic spectra of Mn(II), Fe(III), Ni(II), and Cu(II) complexes suggest an octahedral geometry. Antimicrobial screening of metformin and its complexes were determined against the (G+ and G?) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans).  相似文献   

6.
Two novel heterotrimetallic tetranuclear complexes [Cu(H2L)(CH3OH)]2Gd(DMF)Fe(CN)6·2H2O·DMF (1) and [Cu(H2L)(CH3OH)]2Tb(H2O)0.57(DMF)0.43Fe(CN)6·5.5H2O (2) are reported (H4L = N,N′-ethylenebis(3-hydroxysalicylidene)). The central Ln(III) ion is surrounded by two neutral [Cu(H2L)(CH3OH)] moieties, forming a Cu2Ln trinuclear unit. The [Fe(CN)6]3? anion is weakly coordinated to one Cu(II) ion of [Cu(H2L)(CH3OH)] through a cyanide nitrogen atom with the N–Cu distance of ca. 3.2 Å. Magnetic susceptibility measurements indicate the presence of overall ferromagnetic interactions in complexes 1 and 2. The magnetic coupling constant in complex 1 is J Cu1Gd1 = 4.54 cm?1 and J Cu2Gd1 = 7.97 cm?1 based on \( \hat{H} = - 2J_{\text{Cu1Gd1}} \hat{S}_{\text{Cu1Gd1}} - 2J_{\text{Cu2Gd1}} \hat{S}_{\text{Cu2Gd1}} \) . Dynamic AC magnetic susceptibility studies reveal that complex 2 shows frequency-dependent out-of-phase signals, typical of single molecule magnet behavior. The energy barrier for complex 2 under a 2 kOe applied DC magnetic field is 13 K.  相似文献   

7.
Two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes: [Mn((R,R)-Salphen)Fe(Tp)(CN)3]n (1) and [Mn((S,S)-Salphen)Te(Tp)(CN)3]n (2) (Salphen = N,N’-1,2-diphenylethylenebis (salicylideneiminato) dianion, Tp = tris(pyrazolyl) hydroborate), [Mn((R,R)-Salphen)Fe(Tp*)(CN)3·2H2O]n (3) and [Mn((S,S)-Salphen)Fe(Tp*)(CN)3·2H2O]n (4) (Tp* = hydridotris (3,5-dimethylpyrazol-1-yl) borate), have been successfully synthesized by the reactions of MnIII schiff-base complexes with the tricyanometalate building block, [(LTp)Fe(CN)3]- (LTp = Tp or Tp*). All complexes are made up of neutral cyano-bridged zigzag double chains with (-Fe-C≡N-Mn-N≡C-)n as the repeating unit. Circular dichroism (CD) spectra confirm the enantiomeric nature of the optically active complexes. Magnetic studies demonstrate that ferromagnetic interactions are operative in these complexes. The ferromagnetic couplings become weak in the chains with the bending of the Mn-N≡C angles.  相似文献   

8.
Four azido-bridged dinuclear Mn(II) complexes, [Mn2(phen)4 μ-1,1-N3)2][FeIII(bpmb)(CN)2]2·H2O (1), [Mn2(phen)4(μ-1,1-N3)2][FeIII(bpClb)(CN)2]2·H2O (2), and [Mn2(phen)4(μ-1,1-N3)2][MIII(bpdmb)(CN)2]2·3H2O [M = Fe (3) or Cr (4); phen = 1,10-phenanthroline, bpmb2– = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2– = 1,2-bis(pyridine-2-carboxamido) 4-chloro-benzenate, bpdmb2– = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate], have been synthesized using the synthetic strategy of large anion inducement. Single-crystal X-ray diffraction analysis reveals that all four complexes are doubly end-on (EO) azido-bridged binuclear Mn(II) complexes with two large [M(L)(CN)2] (L = bpmb2?, bpClb2?, or bpdmb2?) building blocks acting as charge-compensating anions. The magnetic properties of the complexes have been investigated, and the results indicate that the magnetic coupling between two Mn(II) centers through the EO azide bridges is ferromagnetic, with J = 0.64(1) cm?1 for 1, 0.43(1) cm?1 for 2, 0.50(1) cm?1 for 3, and 0.66(2) cm?1 for 4. The magneto-structural relationships of EO azido-bridged Mn(II) systems are discussed.  相似文献   

9.
The reactions of [MIII(CN)6]3? (M = Cr or Co) with CuII complexes of a tridentate schiff base [Cu(aemp)Cl] or [Cu(aemp)Ac]2 (Haemp = 2-[(2-amino-ethylimino)-methyl]-phenol) give rise to 1D cyanide-bridged bimetallic coordination polymers [Cu4(aemp)4(H2O)2][Cr(CN)6]Cl (1) and [Cu3(aemp)3(H2O)][Co(CN)6]·2H2O·MeOH (2). In complex 1, the six cyanide ligands of the [Cr(CN)6]3? moiety are involved in bridging, while in complex 2 only five cyanide ligands act as bridges to give a neutral chain. Magnetic studies reveal that complex 1 exhibits intermetallic ferromagnetic coupling, with J = 8.2 cm?1.  相似文献   

10.
The reactions of silver nitrate with 2-sulfoisophthalic acid (H3stp) in the presence of N-donor ligands produced three coordination polymers; [Ag3(stp)(pyz)0.5]n (1), {[Ag4(dpp)4]·2(Hstp)·9H2O}n (2), and {[Ag(bpe)]2[Ag2(bpe)2]2·2(stp)·19H2O}n (3) [pyz = pyrazine, bpp = 1,2-bis(4-pyridyl)propane, bpe = 1,2-di(4-pyridyl)-ethylene]. The complexes have been characterized by single-crystal X-ray diffraction, physico-chemical, and spectroscopic methods. Single-crystal X-ray diffraction reveals that complex 1 is a 2D silver carboxylate-sulfonate layered structure, in which the 2D layers are further linked by the N-donor atoms of pyz ligands into a 3D supramolecular structure. Complex 2 is an infinite 1D chain arrangement with the [Ag2(dpp)2]2+ unit in which weak Ag···Ag or Ag···O interactions extend the chains into 2D structures. Complex 3 has a 3D supramolecular structure constructed by hydrogen bonding, π–π stacking, and Ag···O interactions to link the ligands, metal atoms, and water molecules together. The luminescence properties of the complexes were investigated.  相似文献   

11.
By employing trans-dicyano or pentacyanometalate as building block and using a bicompartimental Schiffbase based manganese(III) compound as assemble segment, two new cyanide-bridged heterometallic Fe(III)–Mn(III) complexes {[Mn(L)(H2O)][Febpb(CN)2]}·2CH3OH (1) and {[Mn(L)(H2O)]2··[Fe(CN)5NO]} (2) (bpb2– = 1,2-bis(pyridine-2-carboxamido)benzenate, L = N,N'-ethylene-bis(3-ethoxysalicylideneiminate) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis reveals binuclear FeMn and trinuclear FeMn2 structure, respectively, in which the cyanide precursor acts as mono- or bidentate ligand to connect the Mn(III) Schiff-base unit(s). Furthermore, these two complexes are self-complementary through coordinated aqua ligands from one complex and the free O4 compartments from the neighboring complex, giving dimeric and 1D single chain supramolecular structure. Investigation of the magnetic susceptibility of 1 reveals weak antiferromagnetic coupling between the adjacent Mn(III) ions. Based on the binuclear FeMn model, best fit of the magnetic susceptibilities of 1 leads to the magnetic coupling constants J =–1.37 cm–1 and zJ′ =–0.72 cm–1 (1).  相似文献   

12.
Based on 5-mercapto-1H-tetrazole-1-methanesulfonic acid disodium salt (Na2mtms) and 4,4′-bipyridine (bpy) as ligands, four new transition metal complexes, namely {[Cd2(mtms)(bpy)2(OAc)2]·H2O} n (1), {[Cd(mtms)(bpy)2(H2O)2]2·bpy·4H2O} n (2), {[Zn2(μ 2-OH)(mtms)(bpy)3(H2O)]·ClO4·H2O} n (3), and {[Co(mtms)2(bpy)(H2O)2]·[Co(bpy)2(H2O)4]·H2O} n (4), have been synthesized and characterized by single-crystal X-ray diffraction. Complex 1 features a pillared-layer coordination architecture linked by acetate, mtms, and bridging bpy ligands. Complex 2 has a 1D polymeric structure with [Cd(mtms)(bpy)2(H2O)2] as the repeating unit; these infinite chains are further connected into a 3D supramolecular framework through π–π stacking of bpy ligands. In complex 3, the mtms ligand combined with μ 2-OH bridges two Zn atoms to form a dimer structure, which is different from that of complex 2. Complex 4 shows a 3D supramolecular network containing infinite [Co(mtms)2(bpy)(H2O)2]2? anionic chains and free [Co(bpy)2(H2O)4]2+ cationic components. The luminescence properties of 1 and 2 and the electrochemical properties of 3 are reported.  相似文献   

13.
The reactions of [MnIII(3-MeOSalen)(H2O)2]+ (Salen = N,N-ethylenebis(salicylideneaminato) dianion) with (Et4N)4[M(CN)8] (M = Mo, W) have been investigated and one mononuclear manganese(II) complex [MnII(Salen)(H2O)] (I) and one bimetallic ion-pair complex [MnIII(3-MeO-Salen)(H2O)2]4[W(CN)8] · DMSO · 4H2O (II) were obtained unexpectedly and characterized by element and single crystal structure analysis. Single crystal X-ray diffraction (CIF files CCDC nos. 1456365 (I) and 1456366 (II)) showed that the Mn2+ ion in complex I is five-coordinated involving in a distorted square pyramid. Furthermore, with the help of the intermolecular hydrogen bond interactions, this complex can be constructed into interesting one-dimensional zig-zag chain structure. For complex II, the coordination sphere of Mn3+ ion is an elongated octahedron. Additional, the four mononuclear manganese(III) units are self-complementary through the coordinated aqua ligand from one molecule and the free O(4) compartment from the neighboring molecule, giving supramolecular dimmers structure. Investigation of the magnetic susceptibility of the two complexes reveals the overall weak antiferromagnetic interactions between the adjacent manganese centers caused by H-bond interactions.  相似文献   

14.
Chemical preparation of the bis(aqua) iron(III) metalloporphyrin [FeIII(TClPP)(H2O)2](SO3CF3)·2(Pnz)·3/4(C6H12)·2H2O (TClPP?=?TClPP?=?5,10,15,20-tetra(para-chlorophenyl)porphyrinato and Pnz?=?phenazine) coordination complex (I) was made. The crystal structure of (I) was determined by X-ray single-crystal diffraction and elucidated by Hirshfeld surface approach. Magnetic, spectroscopic and electrochemical properties were also reported and discussed. The mean equatorial distance (Fe–Np) between the iron(III) atom and porphyrin nitrogen atoms is appropriate to a high-spin (S?=?5/2) iron(III) complex. The high-spin state is also confirmed by both magnetic and electron paramagnetic resonance (EPR) spectroscopy data. The repetitive building unit of the crystal structure provides [FeIII(TClPP)(H2O)2]+ ion complexes, two non-coordinated Pnz molecules and two water molecules which are interconnected by O–H···O/N/Cl, C–H···O/F/Cl hydrogen bonds, and by C–X···π, C–H···π and ππ stacking intermolecular contacts, forming a 3D supramolecular network. The role and nature of these intermolecular interactions were quantitatively analysed by 3D Hirshfeld surface analysis and associated 2D fingerprint plots. Cyclic voltammetry measurements indicate a one-electron reversible reduction wave with an E1/2 (Fe(III)/Fe(II) half-potential value of ?0.24 V, which confirms the high-spin S?=?5/2 state of the studied complex.  相似文献   

15.
A number of stannylene complexes with different M: Sn ratios were obtained using various metals and substituents at the tin atom. The structures of the complexes were examined. A reaction of CpMn(CO)2THF with (Ph4As)+(SnCl3)? gave the ionic complex [Ph4As]+[CpMn(CO)2SnCl3]? (I). The action of C6F5MgBr on the complex C5H5Mn(CO)(NO)SnCl3 produced C5H5Mn(CO)(NO)Sn(C6F5)3 (II). Replacement of the Cl ions in the complex [CpFe(CO)2]2SnCl2 by phenylacetylenide groups gave rise to the neutral complex [CpFe(CO)2]2Sn(C≡CPh)2 (III). A reaction of (Dppm)PtCl2 (Dppm is 1,1-bis(diphenylphosphino)methane) with SnCl2 · 2H2O in the presence of diglyme yielded the ionic complex [η3-CH3O(CH2)2O(CH2)2OCH3)SnCl]+[(η 2-Dppm)Pt(SnCl3)3]? (IV). Transmetalation in a reaction of [(Dppe)2CoCl][SnCl3] · PhBr (Dppe is 1,2-bis(diphenylphosphino)ethane) with (Dcpd)PtCl2 (Dcpd is dicyclopentadiene) in the presence of SnCl2 afforded the ionic complex [Pt(Dppe)2]3[Pt(SnCl3)5]2 (V). Structures I–V were identified by X-ray diffraction. In these structures, the formally single bonds between the atoms of transition metals M (Mn, Fe, and Pt) and Main Group heavy elements (Sn and P) having vacant d orbitals are appreciably shortened. The M-Sn bond length in complexes II and III are virtually independent of the substituents at the tin atom and the Pt-Sn bond length in complexes IV and V is virtually independent of the Pt: Sn ratio.  相似文献   

16.
Using two trans-dicyanidechromium(III) precursors K[Cr(bpdmb)(CN)2] (bpdmb2? = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate), K[Cr(bpClb)-(CN)2] (bpClb2? = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate) and one Cu(II) complex of a 14-membered macrocycle as ancillary organic ligand as assembling segments, two one-dimensional cyanide-bridged CrIII–CuII complexes {{[Cu(cyclam)][Cr(bpdmb)(CN)2]}ClO4} n ·nCH3OH·nH2O (1) and {{[Cu(cyclam)][Cr(bpClb)(CN)2]}ClO4} n ·nCH3OH (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis shows that their similar one-dimensional cationic single-chain structures consist of alternating units of [Cu(cyclam)]2+ and [Cr(bpdmb)(CN)2]?/[Cr(bpClb)(CN)2]? with free ClO4 ? as balancing anions. Investigations of the temperature dependences of magnetic susceptibility and the field-dependent magnetization reveal that both complexes have overall ferromagnetic coupling between the neighboring Cr(III) and Cu(II) centers through the bridging cyanide groups.  相似文献   

17.
New Mn(III) complexes with Schiff bases and dicyanamide are synthesized: [Mn(Salpn)N(CN)2] n (two polymorphous modifications, Ia and Ib), {[Mn(5-BrSalen)N(CN)2] · CH3OH} n (II), and [Mn(3-MeOSalen)N(CN)2(H2O)] (III), where SalpnH2 = N,N′-bis(salicylidene)-1,3-diaminopropane, 5-BrSalenH2 = N,N′-bis(5-bromosalicylidene)-1,2-diaminoethane, and 3-MeOSalenH2 = N,N′-bis(3-methoxysalicylidene)-1,2-diaminoethane. Complexes Ia, Ib, and II have the polymer structure in which the dicyanamide anion binds the paramagnetic Mn(III) complexes with the Schiff bases into one-dimensional chains. Unlike them, in complex III the monomer units containing water and the dicyanamide anion as terminal ligands form dimers due to hydrogen bonds. The study of the magnetic properties of complexes Ia and II shows a weak antiferromagnetic interaction between the Mn3+ ions through the dicyanamide bridges in these complexes.  相似文献   

18.
The reaction of CuCl2·2H2O with 3,5-diisopropylpyrazole (PziPr2H) in the presence of sodium parafluorobenzoate (Na-p-FBz) resulted in the formation of an oxo-chloro-bridged tetranuclear complex [Cu4(PziPr2H)4(μ-O)(μ-Cl)6] 1, whereas the reaction of Cu(NO3)2·3H2O with PziPr2H in the presence of different benzoates gave [Cu(PziPr2H)2(μ-OCH3)]2(NO3)2 2, [Cu(PziPr2H)3(NO3)(p-ClBz)]·CH3CN 3, [Cu(p-CH3Bz)2(PziPr2H)]2·2CH3CN 4, [Cu(p-OCH3Bz)2(CH3CN)]2·4CH3CN 5 and [Cu(p-CNBz)(CH3CN)]2 6. Single-crystal X-ray diffraction studies confirmed these formulations. DNA binding studies for these complexes were performed by means of UV-visible absorption titration and viscosity measurements. Gel electrophoresis studies showed that hydroxyl radicals are involved in DNA cleavage in the presence of the complexes.  相似文献   

19.
A new tetranuclear cyanide-bridged MnIII–FeIII complex based on manganese(III) Schiff base and hexacyanoferrate(III) units, [Mn(L)(MeOH)2][{Mn(L)}{Fe(CN)6}{Mn(L)(MeOH)}].2MeOH, [H2L?=?N,N′-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane] (1), has been synthesized and characterized by elemental analysis, UV–Vis, FT-IR, PXRD, single crystal X-ray analyses, magnetic and photoluminescence measurements. Complex 1 consist of one trinuclear cyanido-bridged anion, in which [Fe(CN)6]3? anion bridge [Mn(L)]+ and Mn(L)(MeOH)}]+ cations via two C≡N groups in the cis positions, and also one isolated manganese [Mn(L)(MeOH)2]+ cation. DC magnetic susceptibility and magnetization studies showed that complex 1 indicates an antiferromagnetic coupling between low-spin Fe(III) and high-spin Mn(III) through the cyanide bridges. In addition, the complex 1 displays a strong cyan-blue luminescence emission in the solid state condition at room temperature. This behavior might be seen easily from the chromaticity diagram. Thus, the complex may be a good promising cyan-blue OLED developing electroluminescent materials for flatted or curved panel display applications due to the fact that it has such features.  相似文献   

20.
Two new 2D metal-organic complexes, namely [Cu(3-dpyb)(1,2,4-HBTC)(H2O)]·H2O (1) and [Cu3(3-dpyb)3(SIP)2(H2O)8]·6H2O (2) [3-dpyb?=?N,N??-bis(3-pyridinecarboxamide)-1,4-butane, 1,2,4-H3BTC?=?1,2,4-benzenetricarboxylic acid, H3SIP?=?5-sulfoisophthalic acid], have been hydrothermally synthesized and structurally characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction analyses. Single crystal X-ray analyses reveal that the two Cu(II) complexes show different 2D coordination networks, the 4-connected (44·62) topology for complex 1 and the (4·62)2(42·62·82) topology for complex 2. In the 2D layers of complexes 1 and 2, the 3-dpyb ligands adopt a typical ?? 2-bridging mode (via ligation of two pyridyl nitrogen atoms), while 1,2,4-HBTC and SIP serve as a linear spacer and a ??V??-like linker, respectively, to connect the adjacent Cu(II) centers. The adjacent 2D layers are extended to 3D supramolecular networks via hydrogen-bonding interactions. The fluorescence properties of both complexes and electrochemical properties of complex 2 have also been investigated. The complex 2 bulk-modified carbon paste electrode (2-CPE) displayed a one-electron redox wave in potential range of 600?C200?mV in 1?M H2SO4 aqueous solution, and 2-CPE showed good electrocatalytic activity toward the reduction of nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号