首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A special xenon matrix detector has been used to study the production of S(1S) following controlled electron impact on thiophosgene (Cl2CS) targets over an electron energy range from threshold to 400 eV. Time-of-flight spectroscopy has been used to measure S(1S) fragment kinetic energies. Fragments with energies in excess of 1 eV have been observed. The absolute cross section for S(1S) production reaches a maximum of [1.05+/-0.35] x 10(-18) cm2 at approximately 125 eV impact energy. Two different fragmentation processes, involving triplet and singlet excited states of the parent Cl2CS molecule, have been identified.  相似文献   

2.
《Chemical physics》2001,263(2-3):449-457
Photoelectron–photoion coincidence spectroscopy has been used to examine dissociative ionisation of CS2 from electronic states of CS2+ up to 27 eV, including the satellite states 3, 4, 6 and 10 whose decay has not been studied before. Branching ratios to the ions S+, CS+, S2+ and C+ have been determined throughout the range and kinetic energy release distributions have been deduced from peak shapes, allowing inferences on the states of the fragments. The choice of product channel is not strongly dependent on initial parent ion state identity. The products are formed in many different final states, but kinetic energy releases less than 3 eV are favoured, corresponding to formation of highly excited states of the products. In confirmation, optical emission has been found in coincidence with photoelectrons from formation of several inner valence states of the ions. Formation of S2+ occurs from several initial states of the parent ion and possible mechanisms are considered. It is concluded that a “quasi-statistical” model may best describe the dissociation of CS2+ from the inner valence states.  相似文献   

3.
The HeI photoelectron spectra of H2CS3 and H2CS4 in the gas phase have been obtained for the first time. A complete theoretical study involving the calculation of the ionization energies using orbital valence Green's functional (OVGF) and population analysis was performed. Calculations of cation-radical forms were carried out in order to interpret the main characters of the six highest occupied molecular orbitals (HOMOs). The first vertical ionization potentials are 8.74 and 8.56eV for H2CS3 and H2CS4, and attributed to {9b2(nS(C=S))}-1 and {8a"(3ppi*(S-S), nS)}-1, respectively. Meanwhile, the energy sequence of three types of sulfur 3p lone-pair have been discussed: 3ppi(S-S)*相似文献   

4.
The first structural reports of anhydrous salts containing the CS2N3 moiety are presented. The new M(+)CS2N3- species (M = NH4 (1), (CH3)4N (2), Cs (3), K (4)) were characterized by vibrational spectroscopy (IR, Raman), as well as multinuclear NMR spectroscopy (1H, 13C, 14N NMR). Moreover, the solid-state structures of NH4CS2N3 (1) [orthorhombic, Pbca, a = 10.6787(1) A, b = 6.8762(1) A, c = 15.2174(2) A, V = 1117.40(2) A3, Z = 8] and (H4C)4NCS2N3 (2) [monoclinic, P2(1)/m, a = 5.9011(1) A, b = 7.3565(2) A, c = 10.9474(3) A, beta = 91.428(1) degrees, V = 475.09(2) A3, Z = 2] were determined using X-ray diffraction techniques. The covalent compound CH3CS2N3 (5) was prepared by the reaction of methyl iodide with sodium azidodithiocarbonate and was characterized by vibrational spectroscopy (IR, Raman), multinuclear NMR spectroscopy (1H, 13C, 14N), and X-ray diffraction techniques [monoclinic, P2(1)/m, a = 5.544(1) A, b = 6.4792(7) A, c = 7.629(1) A, beta = 105.53(2) degrees, V = 264.06(7) A3, Z = 2]. Furthermore, the gas-phase structure of 5 was calculated (MPW1PW91/cc-pVTZ) and found to be in very good agreement with the experimentally determined structure. Improved synthetic routes for the recently reported dipseudohalogen (CS2N3)2 and interpseudohalogen CS2N3CN (6) are described, and the calculated gas-phase structure of 6 was compared with the experimentally determined structure (X-ray). The vibrational spectra of 6 and HCS2N3 (7) are also reported. Furthermore, several plausible isomers for 7 were calculated in an attempt to rationalize the experimentally observed structure which has N-H and not S-H connectivity. The lowest energy isomer for 7 is in agreement with the experimentally observed structure, and the Br?nsted acidity was calculated at the MPW1PW91/cc-pVTZ level of theory. The unknown CSe2N3- anion (8) was also investigated both theoretically and experimentally, and the structure and vibrational data for the unknown CTe2N3- anion (9) were investigated by quantum-chemical calculations using a quasi-relativistic pseudopotential for Te (ECP46MWB) and a cc-pVTZ basis set for C and N. The gas-phase structure of 9 is predicted to be that of a five-membered ring in analogy to the sulfur and selenium analogues.  相似文献   

5.
The mass spectral fragmentation of different 1-chloroalkanes (of the 1-chlorohexane-1-chlorooctadecane series) has been investigated, quantifying the relative abundance of the fragment ions. The base peak is dominantly at m/z 91, 93 in each investigated case, although with the increasing chain length, its contribution to the total ion current exhibits some reduction. Among the possible fragmentation products, the five-membered chloronium containing ring is the most stable as measured by an isodesmic reaction, although the six-and seven-membered rings exhibit only slightly reduced stability. The most stable structure of the 1-chlorohexane radical cation has a hydrogen bonded structure with the involvement of chlorine and the HC(δ), pre-forming the five-membered cationic ring. Accordingly, among the reactions leading to alkyl (or H) radical and a chloronium containing ring, this transition structure has the lowest energy, providing explanation for the experimental observations.  相似文献   

6.
Mielcarek  A.  Wiśniewska  A.  Dołęga  A. 《Structural chemistry》2018,29(4):1189-1200
Structural Chemistry - The reactions between o-vanillin and three isomeric aminopyridines lead to imines of diverse spatial conformation and reactivity. The direct products of these simple...  相似文献   

7.
8.
Theoretical investigations on the thermochemistry and the reaction mechanism of the formation of Lewis acid/base stabilised phosphanyltrielanes D · H2EPH2 · A (D = Lewis base, A = Lewis acid) were conducted. The reactions of EH3 · D with A · PH3 to form D · H2EPH2 · A and H2 (E = B, Al, Ga; D = NH3; A = BH3, Cr(CO)5) are all exothermic, regardless of whether donors and acceptors are present or absent. The lithium chloride elimination reactions between EH2Cl · D and A · PH2Li to give D · H2EPH2 · A and LiCl are endothermic for donor/acceptor stabilised compounds, if formation of gaseous LiCl is considered. If solid lithium chloride is considered all reactions are strongly exothermic. Studies of the transition state for H2-elimination reactions between EH3 · D and A · PH3 to yield D · H2EPH2 · A and H2 were only successful for E = Al, Ga. In these cases the reaction proceeds via a transition state featuring a five or six-coordinate group 13 element. Different donor molecules do not influence the activation energy of such H2-elimination reactions, but nevertheless they have an effect on the reaction energy. The synthesis of the Cr(CO)5 substituted phosphanyltrielanes [(CO)5Cr(H2PBH2 · NMe3)] (3a) and [(CO)5Cr(H2PAlH2 · NMe3)] (3b), as well as of the dinuclear complex [(CO)8Cr2(μ-HPBH2 · NMe3)2] (4) are described, the latter as a subsequent reaction product of the photolysis of 3a. All compounds were characterised spectroscopically and by X-ray structure analysis.  相似文献   

9.
The importance of many-body interactions beyond the mean-field approximation of the Hartree–Fock (HF ) self-consistent-field crystal orbital formalism is analyzed in one-dimensional (lD) transition-metal (3d) polymers with extended organic π ligands. The correlation energies are expressed in a quasiparticle picture. They are divided into long-range contributions that are coordinated with the basis of spatially uncorrelated Bloch orbitals and into short-range correlations derived for local rearrangement processes that are described in terms of a one-electron basis which breaks the translational symmetry of the lD system. Both contributions (long-range and short-range correlations) are fragmented into elements of physical significance (hole and electron self-energies for the former interactions; relaxation, pair-relaxation and pairremoval terms for the local virtual excitations). The magnitude of these elements is analyzed as a function of the characters of the one-electron states in the HF bands, the occupation patterns at the 3d centers, the available particle and hole channels in the elementary fluctuations and the energies and shapes of the various bands. The broad spectrum of possible amplifications and compensations leading to the quasiparticle shifts in metallomacrocycles is discussed. The different mechanisms to change the dispersions and to modify the width of the ?(k) curves are studied. It is shown that electron correlation and relaxation in transition-metal polymers can lead even to a broadening of the energy bands. This behavior is in contrast to the influence of many-body effects in simpler homogeneous materials where electron correlation is in any case accompanied by a narrowing of the dispersions (i.e., detraction of the group velocities of particles and holes). Possible modifications in the shapes of the one-particle curves and the quasiparticle bands are also considered in the text [transition from a “normal ?(k) dispersion” to an energy band with a negative slope as a result of electron correlation]. Simplified formulas are derived that allow for a rough assessment of the various correction terms even in structurally complicated transition-metal stacks with extended organic ligands. The approximate relations are used to correct the HF band structures of complex onedimensional metallomacrocycles as well as simpler crystalline materials by means of the quasiparticle approximation.  相似文献   

10.
Cross-section data for electron impact induced ionization of bio-molecules are important for modelling the deposition of energy within a biological medium and for gaining knowledge of electron driven processes at the molecular level. Triply differential cross sections have been measured for the electron impact ionization of the outer valence 7b(2) and 10a(1) orbitals of pyrimidine, using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and ejected electron energy of 20 eV, for scattered electron angles of -5°, -10°, and -15°. The ejected electron angular range encompasses both the binary and recoil peaks in the triple differential cross section. Corresponding theoretical calculations have been performed using the molecular 3-body distorted wave model and are in reasonably good agreement with the present experiment.  相似文献   

11.
In this paper we present the calorimetric determination of the standard molar enthalpies of combustion, sublimation, and formation of three methoxynitrophenol isomers: 2-methoxy-4-nitrophenol, 2-methoxy-5-nitrophenol and 4-methoxy-2-nitrophenol.In addition, density functional theory calculations with the B3LYP functional and two different atomic basis sets: 6-31G* and 6-311G** allowed the estimation of the standard molar enthalpies of formation in the gaseous phase, for all possible methoxynitrophenol isomers.The theoretical estimations are in good agreement with the experimental determined standard molar enthalpies of formation.  相似文献   

12.
Silylboranes with aromatic substituents linked to boron and silicon exhibit an unexpected absorption band in the UV-Vis spectral region. When polar groups were introduced, a marked solvatochromic effect was observed in their fluorescence emission spectra, revealing a strong excited state dipole moment. Semi-empirical MNDO/d and AM1 calculations showed that, upon UV excitation, the polarity of the Si-B bond increased and the aromatic π-electrons migrated toward the Si-B bond, consistent with experimental observations.  相似文献   

13.
Photophysical and photochemical properties of 1-hydroxy-2-naphthoic acid (1,2-HNA) have been investigated experimentally by steady state and time domain fluorescence measurements and theoretically by Hartree-Fock (HF), configuration interaction at the single excitation (CIS) level, density functional theoretic (DFT), and semiempirical (AM1) methods. 1,2-HNA exhibits normal fluorescence that depends on its concentration, nature of the solvent, pH, temperature, and wavelength of excitation. It seems to form different emitting species in different media, akin to 3-hydroxy-2-naphthoic acid (3,2-HNA). The large Stokes shifted emission observed at pH 13 is attributed to species undergoing excited-state intramolecular proton transfer. Nonradiative transition seems to increase on protonation and decrease on deprotonation. AM1(PECI=8) calculations predict the absorption maximum (lambda(max) = 335.9 nm) in reasonable agreement with experiment (lambda(max) = 352 nm) for the neutral 1,2-HNA. They also predict a red shift in absorption on protonation and a blue shift on deprotonation as observed experimentally. CIS calculations tend to overestimate the energy gap and hence underestimate the absorption maxima between the ground and the excited electronic states of 1,2-HNA and its protonated and deprotonated forms. However, they do predict correctly that the excited state intramolecular proton transfer is likely to occur in the deprotonated form of 1,2-HNA and not in the neutral and the protonated forms. A single minimum is found in the potential energy profile for the ground state as well as the first excited state of 1,2-HNA and its protonated species. In contrast, a double minimum with a nominal barrier in between is predicted for the ground state and also the first three excited states of the deprotonated species. The keto form of the deprotonated species is found to be slightly less stable than the enol form in all the states investigated.  相似文献   

14.
FT-IR and (1)H, (13)C, DEPT, HETCOR, COSY, and NOESY NMR spectra of 2-(1-cyclohexenyl)ethylamine (CyHEA) have been reported for the first time. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of CyHEA (C(8)H(15)N) have been calculated by means of the Hartree-Fock (HF), Becke-Lee-Yang-Parr (BLYP) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31 G(d) and 6-31 G(d,p) basis sets, respectively. The comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for vibrational frequencies and predicting NMR properties.  相似文献   

15.
The vacuum-ultraviolet emission spectrum from 136 nm to 168 nm following the dissociative excitation of a predominantly S(8) target by electron impact at 100 eV incident energy was measured. The relative cross sections for the dominant multiplets at 138.9, 142.9, 147.9, and 166.7 nm are presented. Excitation functions are shown for electron-impact energies from below threshold to 360 eV for the two most prominent emissions at 142.5 nm and 147.4 nm. Five thresholds are clearly apparent in both excitation functions. For the four highest energy channels, the energy separation between the adjacent thresholds is approximately constant and the cross sections reduce regularly as the threshold energies increase. We suggest possible fragmentation pathways of the dissociating S(8) molecule that reproduce the energies of our observed thresholds.  相似文献   

16.
Loss of H2S is the characteristic Cys side‐chain fragmentation of the [M? H]? anions of Cys‐containing peptides. A combination of experiment and theory suggests that this reaction is initiated from the Cys enolate anion as follows: RNH‐?C(CH2SH)CONHR′ Ø [RNHC(?CH2)CONHR′ (HS?)] Ø [RNHC(?CH2)CO‐HNR′‐H]?+H2S. This process is facile. Calculations at the HF/6‐31G(d)//AM1 level of theory indicate that the initial anion needs only ≥20.1 kcal mol?1 of excess energy to effect loss of H2S. Loss of CH2S is a minor process, RNHCH(CH2SH)CON?‐R′ Ø RNHCH(CH2S?)CONHR′ Ø RNH ?CHCONHR+CH2S, requiring an excess energy of ≥50.2 kcal mol?1. When Cys occupies the C‐terminal end of a peptide, the major fragmentation from the [M–H]? species involves loss of (H2S+CO2). A deuterium‐labelling study suggests that this could either be a charge‐remote reaction (a process which occurs remote from and uninfluenced by the charged centre in the molecule), or an anionic reaction initiated from the C‐terminal CO2? group. These processes have barriers requiring the starting material to have an excess energy of ≥79.6 (charge‐remote) or ≥67.1 (anion‐directed) kcal mol?1, respectively, at the HF/6‐31G(d)//AM1 level of theory. The corresponding losses of CH2O and H2O from the [M? H]? anions of Ser‐containing peptides require ≥35.6 and ≥44.4 kcal mol?1 of excess energy (calculated at the AM1 level of theory), explaining why loss of CH2O is the characteristic side‐chain loss of Ser in the negative ion mode. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
采用密度泛函理论方法B3PW91研究了AuCl3催化剂作用下2-丙炔基-苯胺和丙炔环加成生成吲哚衍生物的反应机理。研究结果表明,吲哚衍生物的生成需要经过六个步骤,其中氢迁移过程具有最高的活化自由能为214.22 kJ/mol,是反应的速率控制步骤。整个反应是强放热的,AuCl3催化下反应能够顺利进行,而且AuCl3易于从产物上离去,所以,对于该反应AuCl3是一种有效的催化剂。  相似文献   

18.
The gas-phase reactions between Ca(2+) and glycine ([Ca(gly)](2+)) have been investigated through the use of mass spectrometry techniques and B3-LYP/cc-pWCVTZ density functional theory computations. The major peaks observed in the electrospray MS/MS spectrum of [Ca(gly)](2+) correspond to the formation of the [Ca,C,O(2),H](+), NH(2)CH(2) (+), CaOH(+), and NH(2)CH(2)CO(+) fragment ions, which are produced in Coulomb explosion processes. The computed potential energy surface (PES) shows that not only are these species the most stable product ions from a thermodynamic point of view, but they may be produced with barriers lower than for competing processes. Carbon monoxide is a secondary product, derived from the unimolecular decomposition of some of the primary ions formed in the Coulomb explosions. In contrast to what is found for the reactions of Ca(2+) with urea ([Ca(urea)](2+)), minimal unimolecular losses of neutral fragments are observed for the gas-phase fragmentation processes of [Ca(gly)](2+), which is readily explained in terms of the topological differences between their respective PESs.  相似文献   

19.
The stereoselectivity of the Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents was investigated experimentally by determination of the product stereochemistry and theoretically via DFT calculations. The results indicate that imines preferentially attack the less sterically hindered exo-side of the ketenes to generate zwitterionic intermediates. Subsequently, for cyclic imines, the intermediates undergo a conrotatory ring closure directly to produce β-lactams, while for linear imines, the imine moiety of the intermediates isomerizes to more stable intermediates, which further undergo a conrotatory ring closure to afford trans-β-lactams. The steric hindrance and the isomerization, rather than the torquoelectronic effect, play crucial roles in controlling the stereoselectivity in the practical Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents, although the unaccessible borylketene with a powerful electron acceptor group controls the stereoselectivity torquoelectronically, in theory.  相似文献   

20.
《印度化学会志》2023,100(10):101090
Environmental pollution of heavy metals is increasingly becoming a problem and has become of great concern due to the adverse effects it is causing around the world. Many techniques were applied to detect, to determine and to remove. In this study, a simple electrochemical methods was used. The preparation of a novel PVC membrane green sensor was conducted for the Co+2 ion considering the Celeriac alcoholic extract. The sensor has a 29.5 mV decade−1 Nernstian slope within an extensive range of linear concentrations from 0.38 × 10−3 to 0.08 × 10−3 while possessing a 0.03 × 10−4. M detection limit. The response time reported for the proposed sensor is < 10 s, and it is useable for a minimum period of one month with no significant potential divergence. The potentiometric response independence from the test solution pH was also confirmed at pH ranges of 5.8–11. The introduced electrode is appropriately selective in various transition metal ions. The reactivity (chemical and electromechanical) characteristics, including electronegativity, electrophilicity, chemical potential, band gap, softness, and hardness were calculated using the DFT technique. As shown by the results, the apijin was highly reactive in different Celeriac compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号