首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
近年来,柔性电子器件的发展日新月异。以碳纳米管为代表的碳纳米材料,尤其是其组装成的宏观结构碳纳米管薄膜具有良好的柔性和优异的导电性,且具有化学稳定、热稳定、光学透明性等优点,在柔性电子领域展现了极大的应用潜力。本文简要综述了近年来碳纳米管薄膜在柔性电子器件领域的研究进展。首先详细介绍了碳纳米管薄膜的两类主要制备方法,分别为干法制备和湿法制备;继而介绍了碳纳米管薄膜在多种柔性电子器件的组装、性能与应用方面的最新研究进展;最后总结了碳纳米管薄膜基柔性电子领域的发展现状,并讨论了该领域所面临的挑战及其未来前景。  相似文献   

2.
《Analytical letters》2012,45(17):2786-2798
Prussian blue has significant application for the construction of electrochemical biosensors. In this work, Prussian blue-reduced graphene oxide modified glass carbon electrodes were successfully fabricated using electrochemical deposition. The high surface area of graphene oxide enhanced the deposition of Prussian blue and the resulting electrocatalytic activity. Infrared spectroscopy and scanning electron microscopy showed that the relatively porous Prussian blue was on the surface of reduced graphene oxide. Cyclic voltammetry showed that Prussian blue-coated reduced graphene oxide composite films improved electron transfer compared to Prussian blue films. The Prussian blue-reduced graphene oxide composite film provided higher response for the reduction of hydrogen peroxide and the oxidation of dopamine compared with the Prussian blue film due to synergistic effects between the reduced graphene oxide and Prussian blue particles. The sensitivity of the electrode was 0.1617 µA µM?1 cm?2. The linear dynamic range extended from 0.5 µM to 0.7 mM dopamine with a limit of detection equal to 125 nM. This work provided a versatile strategy for the design and construction of sensitive amperometric sensors with robust electrocatalytic behavior.  相似文献   

3.
Journal of Solid State Electrochemistry - The development and analytical applications of electrochemical sensors based on antimony tin oxide (ATO)–Prussian blue (PB) screen-printed electrode...  相似文献   

4.
AnElectrochemicalStudyofPrusianBlueMicrocrystalinesMixedinPEO400PolymerElectrolytebySolid┐stateVoltammetryGUOLi-pingandLINXia...  相似文献   

5.
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or -amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 × 10−6 M and a linear concentration range of 0.01–3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another ( -amino acid) sensor gave a detection limit of 3 × 10−5 M -alanine, injected with a linear concentration range of 7.0 × 10−5-1.4 × 10−2 M. Glucose and -amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.  相似文献   

6.
A highly sensitive amperometric Prussian blue-based hydrogen peroxide sensor was developed using 3D pyrolytic carbon microelectrodes. A 3D printed multielectrode electrochemical cell enabled simultaneous highly reproducible Prussian blue modification on multiple carbon electrodes. The effect of oxygen plasma pre-treatment and deposition time on Prussian blue electrodeposition was studied. The amperometric response of 2D and 3D sensors to the addition of hydrogen peroxide in μM and sub-μM concentrations in phosphate buffer was investigated. A high sensitivity comparable to flow injection systems and a detection limit of 0.16 μM was demonstrated with 3D pyrolytic carbon microelectrodes at stirred batch condition  相似文献   

7.
Human serum is one of the effective samples for point-of-care testing (POCT). Sensitive and quick determination of thrombin content in human serum samples is important. An electrochemical aptasensor based on Prussian blue and Au nanoparticles loaded MoS2 nanoflowers (PB−Au@MoS2) hybrid was constructed. By using PB−Au@MoS2 as both a substrate and a signal reporter, this aptasensor could demonstrate excellent performance for thrombin detection with a detection linear range from 0.01 pM to 30 nM and detection limit down to 1 fM. This work may provide a strategy to establish effective and sensitive sensing devices for thrombin in clinical diagnosis.  相似文献   

8.
The concept of the Internet of Things is dramatically changing the way society interacts with physical spaces and portable technologies. For the last couple of years, intensive research has been devoted on the design of several flexible and even wearable devices, such as displays and health-care sensors. Further developments on these new technologies are heavily conditioned by the lack of compatible energy storage/conversion units. Contrary to lithium-ion batteries, supercapacitors can be easily miniaturized and integrated on flexible/wearable technologies without losing their electrochemical performance. In this review, some of the most recent developments on the design and printing of light, flexible, and thin microsupercapcitors along with promising and further practical applications are presented.  相似文献   

9.
The fabrication of flexible electronics and systems, using rigid and brittle materials directly produced on stretchable substrate, leads to some issues and incompatibilities. These include rigidity for processing and modular flexibility for applications, macroscopic flexibility, and local rigidity to shield components from strain, compatibility with technological steps, and at the same time allowing patterning and machining. The development of smart substrate materials which meet such needs is therefore a promising route for flexible systems. Here, we demonstrate that by mixing polydimethylsiloxane (PDMS) and SU‐8 photoresist, we obtain both a photo‐hardenable and patternable stretchable hybrid material. A set of PDMS/SU‐8 and baking process combinations have been tested to determine an effective photo‐sensitive mixture. A standard photolithographic approach has been used on tensile test samples demonstrating a local hardening of millimeter‐sized ultraviolet exposed features and a local strain reduction reaching 35%. In addition, surface topography analysis and wet‐etching techniques have been used to demonstrate a light‐induced molding process and a selective etching of micrometer‐sized ultraviolet exposed patterns. The combined functional properties of the following material, its simplicity of implementation, and the well‐known assets of PDMS and SU‐8 make the PDMS/SU‐8 material very interesting and promising for various applications, especially stretchable systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1281–1291  相似文献   

10.
Advances in flexible electronic devices and robotic software require that sensors and controllers be virtually devoid of traditional electronic components, be deformable and stretch-resistant. Liquid electronic devices that mimic biological synapses would make an ideal core component for flexible liquid circuits. This is due to their unbeatable features such as flexibility, reconfiguration, fault tolerance. To mimic synaptic functions in fluids we need to imitate dynamics and complexity similar to those that occurring in living systems. Mimicking ionic movements are considered as the simplest platform for implementation of neuromorphic in material computing systems. We overview a series of experimental laboratory prototypes where neuromorphic systems are implemented in liquids, colloids and gels.  相似文献   

11.
Flexible strain sensors based on conductive fillers and flexible polymers possessed significant advantages in human motion detection. Preparing a strain sensing layer with high electrical conductivity and excellent mechanical property under high content of conductive filler contributed to the stability of flexible strain sensors. In this study, MWCNTs/PDMS composite film was prepared by the organic solvent method. The microstructure, electrical conductivity, mechanical property, and piezoresistive characteristics of the composite film at different MWCNTs contents were characterized and discussed. When the mass fraction of MWCNTs in the composite film was 5%, the composite film exhibited a high electrical conductivity of 9.56 S/m while maintaining ideal mechanical properties, and the film thickness was just about 180 μm. The relationship between electrical signals and film strain was performed. The piezoresistive characteristic results demonstrated that the prepared composite film could be used as flexible strain sensor for human motion detection. The prepared thin MWCNTs/PDMS composite film in this paper illustrated high conductive and desired flexibility, and was an alternative material for human motion detection.  相似文献   

12.
The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium‐ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium‐ion batteries have a flexible fiber shape that enables promising applications in electronic textiles.  相似文献   

13.
Organic single crystals (OSCs) with excellent flexibility and unique optical properties are of great importance due to their broad applicability in optical/optoelectronic devices and sensors. Nevertheless, fabricating flexible OSCs with room-temperature phosphorescence (RTP) remains a great challenge. Herein, we propose a host–guest doping strategy to achieve both RTP and flexibility of OSCs. The single-stranded crystal is highly bendable upon external force application and can immediately return to its original straight shape after removal of the stress, impressively emitting bright deep-red phosphorescence. The theoretical and experimental results demonstrate that the bright RTP arises from Förster resonance energy transfer (FRET) from the triphenylene molecules to the dopants. This strategy is both conceptually and synthetically simple and offers a universal approach for the preparation of flexible OSCs with RTP.  相似文献   

14.
The steam-assistant heteroatoms of sulfur and phosphorus dual-doped graphene film fabricated via an ice-template and thermal-activation approach demonstrates an excellent pseudocapacitive behavior in flexible electrochemical capacitors.  相似文献   

15.
Electroanalysis has obtained considerable progress over the past few years, especially in the field of electrochemical sensors. Broadly speaking, electrochemical sensors include not only conventional electrochemical biosensors or non-biosensors, but also emerging electrochemiluminescence (ECL) sensors and photoelectrochemical (PEC) sensors which are both combined with optical methods. In addition, various electrochemical sensing devices have been developed for practical purposes, such as multiplexed simultaneous detection of disease-related biomarkers and non-invasive body fluid monitoring. For the further performance improvement of electrochemical sensors, material is crucial. Recent years, a kind of two-dimensional (2D) nanomaterial MXene containing transition metal carbides, nitrides and carbonitrides, with unique structural, mechanical, electronic, optical, and thermal properties, have attracted a lot of attention form analytical chemists, and widely applied in electrochemical sensors. Here, we reviewed electrochemical sensors based on MXene from Nov. 2014 (when the first work about electrochemical sensor based on MXene published) to Mar. 2021, dividing them into different types as electrochemical biosensors, electrochemical non-biosensors, electrochemiluminescence sensors, photoelectrochemical sensors and flexible sensors. We believe this review will be of help to those who want to design or develop electrochemical sensors based on MXene, hoping new inspirations could be sparked.  相似文献   

16.
In this study, we examined the synthesis of Prussian blue onto p-Si(100). The Prussian blue formation was carried out by means of the deposition of a Fe film and then its dissolution in presence of potassium hexacyanoferrate(II). In the first stage, a study by cyclic voltammetry was carried out, and then, using the potential step method, the corresponding nucleation and growth mechanism were determined. Likewise, a morphologic analysis of the deposits obtained at different potential values by means of atomic force microscopy was carried out. The results are consistent with a 3D progressive nucleation with diffusion-controlled growth. Finally, this research is oriented to construct electrochemical storage devices which can be in situ loaded by the photovoltaic action of the semiconductor base material doped silicon.  相似文献   

17.
In this review, we detail the evolution and recent progress of glove‐based wearable electrochemical sensors with focus on forensic, security, and defense applications. Glove‐based wearable sensors offer the ability to have rapid, on‐site chemical and biological threat assessment, ranging from explosive and gunshot residues to drugs of abuse and pesticides, critical for timely and informed incident management and investigation. Additionally, these field deployable systems offer the ability for law enforcement to complete on‐the‐spot qualitative chemical testing for immediate forensic evidence collection in connection to mechanical ‘swipe’ sampling. Recent advances have been made for translation of this class of wearable electrochemical sensors to increase the sensory perspective of robotics, demonstrating the progression to robotic skin with chemical analysis capability suitable for translation to remote chemical analysis in hazardous scenarios. Critical to such progress have been advances in flexible electrochemically‐compatible materials and design, with increasing functionality, leveraging from advances in wearable biosensors and electronic miniaturization. Indeed, the customization potential of these wearable systems is great, yet challenges remain for advancing these systems from prototypes to more ubiquitous devices readily deployed in the field. With significant attention these challenges can be overcome, creating new opportunities for further decentralization of electrochemical analyses using these flexible and intuitive glove‐based wearable sensing systems for significant impact on fields such as forensics, defense, biomedical, robotics and beyond.  相似文献   

18.
In this study, we examined the characterization of Prussian blue deposited onto p-Si(100). A cyclic voltammetry analysis was carried out under illumination showing quasi-reversibility responses of high and low-spin iron centres in the deposit. Optical measurements were done, where XRD analysis allowed to determine crystallinity while EDS analysis indicated that there is influence in the number of cycles on the film composition. Reflectance measurements confirm the coloration observed in the films. However a Kubelka–Munk analysis demonstrates the presence of blue greenish coloration which is an indication of a mix between Prussian blue and Berlin green films. Finally, this research is oriented to construct electrochemical storage devices which can be in situ loaded by the photovoltaic action of the semiconductor base material-doped silicon..  相似文献   

19.
In this article, we report a flexible poly(dimethylsiloxane) (PDMS)-based three-electrode sensor (FPT-Sensor). In PDMS basis, gold was chemically deposited as working and counter electrodes, and silver as the reference one, the device was flexible without inducing irreversible deformation or fatigue after electrochemical testing with forced deformations (the device was twisted, rolled, and stretched). This sensing system provides a route for producing in situ diagnosis sensing device which requires excellent flexibility to fit in various situations.  相似文献   

20.
江禹  马俊林  朱楠 《化学通报》2020,83(4):325-333
实现对人体的健康监测和慢性病监测是包括材料科学、信息技术、电子技术、分析化学等科学领域在内的世界前沿课题。通过连续获取温度、压力、应力等物理信号来实现对人体活动情况和心率、血压、脑电图、心电图等实时监测的可穿戴设备已实现商业化,但连续监测人体体液、呼出气中的各类化学物质的可穿戴传感器仍面临许多问题,比如传感器的柔韧性、灵敏度、准确性以及与人体皮肤的贴合性等。针对这些问题,本文以柔性印刷技术为出发点,综述了各类柔性基底在电化学传感器/生物传感器领域的应用,同时对可穿戴传感器的发展方向提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号