首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analytical Quality by Design principles using the design of experiments were applied for the development of a capillary electrophoresis method for the determination of enantiomeric purity and chemically related impurities of tamsulosin. From initial scouting experiments, a dual cyclodextrin (CD) system composed of sulfated β-CD and carboxymethyl-α-CD was selected as the chiral selector. A fractional factorial resolution V+ design was used for the identification of the critical process parameters, while a face-centered central composite design and Monte Carlo simulations were employed for final optimization and defining the design space of the method. The experimental conditions of the working point were: 30 mM sodium phosphate buffer, pH 3.0, containing 40 mg/mL sulfated β-CD and 7 mg/mL carboxymethyl-α-CD, capillary temperature 18°C, applied voltage -23 kV. Following the assessment of robustness by applying a Plackett-Burman design, the method was validated according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use guideline Q2(R1). The method allowed the quantification of the chiral impurity and three other related impurities at the 0.1 % level with acceptable accuracy and precision.  相似文献   

2.
R-solriamfetol is a recently approved drug used for the treatment of excessive sleepiness associated with narcolepsy and sleep apnea. Herein, a capillary electrophoretic method was developed, enabling the simultaneous analysis of the API and its S-enantiomer in addition to the enantiomers of its major impurity phenylalaninol. Twenty-nine different cyclodextrins (CDs), including native, neutral, and charged ones were screened as potential chiral selectors, and the best results were obtained with sulfated CDs. Randomly sulfated-β-CD exhibited outstanding enantioresolution, the peaks of phenylalaninol enantiomers inserted between the two peaks of solriamfetol enantiomers, while sulfated-γ-CD (S-γ-CD) showed remarkable resolution values in a much shorter analysis time with the optimal enantiomer migration order. Among the single isomer sulfated CD derivatives, substituent dependent enantiomer migration order reversal could also be observed in the case of heptakis(6-O-sulfo)-β-CD (HS-β-CD) or heptakis(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS-β-CD) with R-,S-solriamfetol, and heptakis(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS-β-CD) resulting S-,R-solriamfetol migration order. The sulfated-γ-CD system was chosen for method optimization applying orthogonal experimental design. The optimized method (45 mM Tris-acetate buffer, pH 4.5, 4 mM S-γ-CD, 21°C, +19.5 kV) was capable for the baseline separation of solriamfetol and phenylalaninol enantiomers within 7 min. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of pharmaceutical preparation (Sunosi® 75 mg tablet), thus it may serve as a routine procedure for the laboratories of regulatory authorities as well as in Pharmacopoeias.  相似文献   

3.
Zhao S  Song Y  Liu YM 《Talanta》2005,67(1):212-216
A capillary electrophoresis method has been developed for the determination of d-serine in neural samples. d/l-serine was tagged with naphthalene-2,3-dicarboxaldehyde (CBI-d/l-Ser), and the separation of CBI-d/l-Ser enantiomer was achieved by using a dual chiral selector system consisting of β-cyclodextrin (β-CD) and chiral micelles formed by sodium deoxycholate (SDC). No resolution was observed when either β-CD or SDC was used alone. Moreover, the combined use of β-CD with achiral micelles of sodium dodecylsulfate (SDS) exhibited no resolving effect. With laser induced fluorescence detection, the limit of detection was 3.0 × 10−8 M Ser. Under the separation conditions selected, no other amino acids co-eluted with l-/d-Ser enantiomers. Using the present method, d-Ser level in Aplysia ganglia homogenates was found to vary significantly from animal to animal. Interestingly, d-Ser was not detected in single neurons isolated from Aplysia ganglia.  相似文献   

4.
Direct capillary zone electrophoretic methods were developed for the separation of the enantiomers of unnatural β-substituted tryptophan analogues such as erythro- and threo-β-methyl-, β-2-propyl-, β-3-pentyl-, β-phenyl- and β-2,5-dimethoxyphenyltryptophan. Cyclodextrins (CDs) were chosen as chiral selectors because of their favorable properties (stability, commercial availability, low cost, UV transparency, inertness, etc.). Capillary zone electrophoresis was carried out using sulfopropylated-α-CD (SP2-α-CD), sulfopropylated-β-CD (SP2-β-CD) both with a degree of substitution of 2 moles/mole cyclodextrin, and sulfopropylated-β-CD (SP4-β-CD) with a degree of substitution of 4 moles/mole β-cyclodextrin. With this technique all compounds investigated are baseline resolved using different background electrolytes and chiral additives. The elution sequence was determined in all cases.  相似文献   

5.
Na N  Hu Y  Ouyang J  Baeyens WR  Delanghe JR  Taes YE  Xie M  Chen H  Yang Y 《Talanta》2006,69(4):866-872
A new strategy for chiral separation by capillary electrophoresis employing modified-nanoparticles as chiral selector is described for clenbuterol analysis. Nanoparticles modified with β-cyclodextrin (β-CD) form a large surface area platform to serve as a pseudostationary chiral phase, which can be applied for the enhancement of the enantioseparation. The application of four kinds of nanoparticles was investigated (multi-walled nanotubes (MWNTs), polystyrene (PS), TiO2 and Al2O3) modified with single layer β-CD as chiral selector in the enantioseparation of clenbuterol by capillary electrophoresis (CE). Successful clenbuterol enantioseparation could be achieved with the β-CD-modified MWNTs as chiral selector. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) confirmed the β-CD modification of the nanoparticles. The effects of nanoparticles, surfactant, chiral selector (β-CD) and run buffer were studied in relation to the enantiomeric separation of clenbuterol. This study opens attractive perspectives for the use of modified nanoparticles for chiral separational purposes in CE.  相似文献   

6.
In this work, a new open-tubular capillary electrochromatography (OT-CEC) column was prepared using β-cyclodextrin covalent organic framework (β-CD COF) as a stationary phase. Polydopamine was used to assist fabrication of β-CD COF on an inner wall of a fused-silica capillary. The coating layer on the capillary was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electroosmotic flow (EOF) was also studied to evaluate the variation of the inner wall of immobilized columns. Furthermore, the chiral separation effectiveness of the fabricated capillary column was evaluated by CEC using enantiomers of several related proton pump inhibitors as model analytes, including omeprazole, lansoprazole, pantoprazole and tenatoprazole. The effects of bonding time and concentration of β-CD COF, the type, concentration and pH of buffer, applied voltage were investigated to obtain satisfactory enantioselectivity. In the optimum conditions, the enantiomers of four analytes were resolved within 15 min with resolutions of 1.63–2.62. The relative standard deviation values for migration times and resolutions of the analytes representing intraday and interday were less than 6.75% and 4.24%, respectively. The results reveal that β-CD COF has great potential as chiral-stationary phases for enantioseparation in CEC.  相似文献   

7.
Capillary zone electrophoresis was used for the enantiomeric separation of six β-blocking drug substances with β-cyclodextrin (β-CD) and its derivatives as chiral selectors employing an uncoated capillary. The effects of pH value and composition of the background electrolyte (BGE), the capillary temperature and running voltage have been investigated. The results showed that β-CD type, concentration and pH value have a strong influence on the efficiency of the chiral separation. Carboxymethyl-β-cyclodextrin (CM-β-CD) gave a baseline enantiomeric separation for six β-blocking drug substances under optimal conditions, whereas the β-CD, hydroxypropyl-β-cyclodextrin (HP-β-CD) showed no chiral recognition. The potential and capillary temperature did not have a great effect on enantiomer resolution.  相似文献   

8.
Enantiomeric separations of several β-amino alcohol drugs, i.e., phenylephrine, epinephrine, norepinephrine, synephrine, and chlorprenaline were performed by capillary electrophoresis using DM-β-CD as a chiral selector. Five test solutes were baseline resolved in six minutes. The effects of DM-β-CD concentration, pH value, ionic strength of the buffer, and the type of β-CDs on resolution were investigated. The results indicated that DM-β-CD is suitable for enantiomeric separation of β-amino alcohols containing a phenyl group on the chiral atom. Enantiorecognition mechanisms for test solutes are also discussed.  相似文献   

9.
A rapid and effective method was developed for the chiral separation of raltitrexed (RD) enantiomers by carboxymethyl-beta-cyclodextrin (CM-β-CD)-modified micellar electrokinetic chromatography (MEKC). Optimization of conditions including the type and concentration of the chiral selector, concentration of sodium dodecyl sulfate (SDS), pH and concentration of the background electrolyte (BGE), capillary temperature, and applied voltage was investigated. The enantiomers of raltitrexed could be separated with satisfactory resolution and linear response by using 75 mM Tris-phosphate at pH 8.0 containing 30 mM SDS and 8 mM CM-β-CD as buffer system. Furthermore, the usefulness of this method was demonstrated in a purity test of a real synthetic drug sample. Figure Chiral separation of raltitrexed by CM-β-CD MEKC was optimized and applied to test the purity of a synthetic drug sample  相似文献   

10.
Krait  Sulaiman  Dou&#;a  Michal  Scriba  Gerhard K. E. 《Chromatographia》2016,79(19):1343-1350

A quality by design approach utilizing experimental design methodologies was applied to develop a CE method to evaluate the enantiomeric purity of (S)-ambrisentan, a selective endothelin receptor antagonist used for the treatment of pulmonary arterial hypertension. Initial method scouting was performed by screening native cyclodextrins (CDs) as well as neutral CD derivatives and a positively charged derivative at pH 5 and pH 9, identifying γ-CD as suitable selector at pH 5. Upon defining the critical quality attributes and the critical process parameters, i.e., chiral resolution and run time, method development was performed by application of a screening design for the identification of the significant variables and, subsequently, by a response surface methodology for obtaining the design space. A Plackett–Burman design was employed for robustness testing. The final working point conditions used a background electrolyte composed of a 50-mM sodium acetate buffer, pH 4.0, containing 30 mM γ-CD in a 75-μm ID fused-silica capillary with an effective length of 40 cm at an applied voltage of 25 kV and a capillary temperature of 25 °C. The method was validated according to the ICH Q2(R1) guideline and allowed the determination of a relative concentration of the (R)-enantiomer of 0.1 %.

  相似文献   

11.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

12.
A simple and fast liquid chromatography–tandem mass spectrometry method was established and validated for the simultaneous determination of tenofovir alafenamide (TAF) and tenofovir (TNF) in human plasma. A simple protein precipitation procedure was employed to extract analytes from plasma. Chromatographic separation was performed on an Eclipse Plus C18 column utilizing a fast gradient elution starting with 2% of 2 mM ammonium acetate–formic acid (100/0.1, v/v) followed by increasing the percentage of acetonitrile. Detection was performed on a tandem mass spectrometer equipped with an electrospray ionization source operated in the positive ionization mode, using the transitions m/z 477.2 → m/z 346.1 for TAF and m/z 288.1 → m/z 176.1 for TNF. TAF-d5 and TNF-d7 were used as the internal standard of TAF and TNF, respectively. The method was validated in the concentration ranges 1.25–500 ng/mlfor TAF and 0.300–15.0 ng/ml for TNF with acceptable accuracy and precision.  相似文献   

13.
In this work, a simple, reliable, and fast capillary electrophoretic method was developed and validated for the simultaneous determination of 12 polyphenolic compounds, the most frequently found in carob's pulp and seeds. The present work deals with the development of a novel dual electrophoretic system based on the combined use of β-CD and ionic liquid (IL) as buffer additives. A baseline separation of the target analytes was achieved in less than 10 min by using a BGE consisting of 35 mM borate along with 15 mM β-CD and 3 mM l -alanine tert butyl ester lactate (l -AlaC4Lac) IL as buffer additives at pH 9.5, a temperature of 25°C, and an applied voltage of 30 kV. The application of the developed electrophoretic method to real samples enabled the identification and quantification of the main phenolic constituents of both ripe and unripe carob pulp extracts. The results revealed the predominance of gallic acid in both ripe (183.92 μg/g carob pulp) and unripe (205.10 μg/g carob pulp) carob pulp and highlighted the great influence of the ripening stage on carobs polyphenolic composition, with unripe pods being more enriched in polyphenols (total phenolics detected: 912.58 and 283.13 μg/g unripe and ripe carob pulp).  相似文献   

14.
Separations of neutral and basic racemates were performed using five different anionic cyclodextrin (CD) derivatives as chiral selectors, viz. carboxymethylated β-CD, β-CD phosphate sodium salt, sulfobutyl ether β-CD sodium salt, carboxymethylated γ-CD, and γ-CD phosphate sodium salt. For the separation of neutral racemates, an untreated fused silica capillary was employed and various neutral racemates were successfully separated. Since the pH of the buffer affected the electroosmotic flow (EOF), the resolution was improved by changing the buffer pH. A polyacrylamide coated capillary was employed for the separation of basic racemates to suppress EOF and to prevent adsorption of cationic analyte on the capillary surface. By choosing an appropriate type and concentration of anionic CD, about 40 basic racemates were successfully separated. Some rough binding constants of basic analytes with an anionic β-CD were measured to discuss the optimum concentration of the CD. The migration direction was dependent on the binding constants and the concentration of the CD. The analyte strongly bound to the anionic CD migrated towards the anode but the weakly bound one moved towards the cathode. Anionic γ-CDs were also very useful for the separation of basic enantiomers. Five neutral CDs were employed as chiral selectors to compare selectivity between charged and neutral CDs, and eleven racemates could only be resolved using anionic CDs. The separation of some basic racemates in human plasma was also described. The direct injection of plasma samples was possible for some enantiomers that did not interact strongly with plasma proteins.  相似文献   

15.
The configurational stability of 9-hydroxyrisperidone, an atypical antipsychotic, was studied under acidic, basic and physiological conditions. The analysis of 9-hydroxyrisperidone was performed using a recently validated chiral capillary electrophoretic method developed using a dual cyclodextrin mode (hydroxypropylated-β-CD and sulfated-α-CD). The kinetic parameters (rate constants, half-lives, and apparent free energy barriers) of the racemization were calculated through a mathematical model of the first-order reaction. The influences of the pH, the temperature, the nature and the concentration of the buffer, and the presence of an organic co-solvent were investigated. The fastest racemizations were observed under acidic conditions with high phosphate buffer concentrations and high temperatures. Under these conditions, the cyclodextrins (β-CD, methyl- β-CD, or hydroxypropylated-β-CD) added to both enantiomers in various molar ratios were not able to retard the racemization. Finally, the mechanism of racemization was investigated using nuclear magnetic resonance (NMR) and the proton–deuterium exchange of the proton H9 borne by the chiral carbon has proven the presence of an imine–enamine tautomerism.  相似文献   

16.
A capillary electrokinetic chromatography method (CEKC) was developed for complete stereoisomeric separation of a neutral, hydrophobic, multiple chiral center dihydropyridone analogue, a drug candidate proposed in type 2 diabetes treatment. A background electrolyte comprising three cyclodextrins was found to successfully separate the eight isomers. First an anionic cyclodextrin, the SBE-β-CD, was selected to allow the chiral separation of our neutral compound and partial resolutions of the eight isomers were obtained. Then, the effects of different parameters such as the nature and concentration of the other cyclodextrins added and pH of the buffer were examined. Finally, a triple CD-system consisted of 15 mM SBE-β-CD plus 15 mM γ-CD and 40 mM HP-γ-CD in a 50 mM borate background electrolyte at pH 10, was found to successfully separate the eight isomers. Last, the selectivity and limits of detection and quantification were evaluated for this optimized method.  相似文献   

17.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

18.
Novel capillary electrophoresis methods using CDs as chiral selectors were developed and validated for the chiral separation of lansoprazole and rabeprazole, two proton pump inhibitors. Fourteen different neutral and anionic CDs were screened at pH 4 and 7 in the preliminary analysis. Sulfobutyl‐ether‐β‐CD with a degree of substitution of 6.5 and 10 at neutral pH proved to be the most suitable chiral selector for both compounds. Various dual CD systems were also compared, and the possible mechanisms of enantiomer separation were investigated. A dual selector system containing sulfobutyl‐ether‐β‐CD degree of substitution 6.5 and native γ‐CD proved to be the most adequate system for the separations. Method optimization was carried out using an experimental design approach, performing an initial fractional factorial screening design, followed by a central composite design to establish the optimal analytical conditions. The optimized methods (25 mM phosphate buffer, pH 7, 10 mM sulfobutyl‐ether‐β‐CD/20 mM γ‐CD, +20 kV voltage; 17°C temperature; 50 mbar/3 s injection, detection at 210 nm for lansoprazole; 25 mM phosphate buffer, pH 7, 15 mM sulfobutyl‐ether‐β‐CD/30 mM γ‐CD, +20 kV voltage; 18°C temperature; 50 mbar/3 s injection, detection at 210 nm for rabeprazole) provided baseline separation for lansoprazole (Rs = 2.91) and rabeprazole (Rs = 2.53) enantiomers with favorable migration order (in both cases the S‐enantiomers migrates first). The optimized methods were validated according to current guidelines and proved to be reliable, linear, precise, and accurate for the determination of 0.15% distomer as chiral impurity in dexlansoprazole and dexrabeprazole samples.  相似文献   

19.
Besides the racemate, the S-enantiomer of ibuprofen (Ibu) is used for the treatment of inflammation and pain. Since the configurational stability of S-Ibu in solid state is of interest, it was studied by means of ball milling experiments. For the evaluation of the enantiomeric composition, a chiral CE method was developed and validated according to the ICH guideline Q2(R1). The addition of Mg2+, Ca2+, or Zn2+ ions to the background electrolyte (BGE) was found to improve Ibu enantioresolution. Chiral separation of Ibu enantiomers was achieved on a 60.2 cm (50.0 cm effective length) x 75 μm fused-silica capillary using a background electrolyte (BGE) composed of 50 mM sodium acetate, 10 mM magnesium acetate tetrahydrate, and 35 mM heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) as chiral selector. The quantification of R-Ibu in the mixture was performed using the normalization procedure. Linearity was evaluated in the range of 0.68–5.49% R-Ibu (R2 = 0.999), recovery was found to range between 97 and 103%, the RSD of intra- and interday precision below 2.5%, and the limit of quantification for R- in S-Ibu was calculated to be 0.21% (extrapolated) and 0.15% (dilution of racemic ibuprofen), respectively. Isomerization of S-Ibu was observed under basic conditions by applying long milling times and high milling frequencies.  相似文献   

20.
A capillary zone electrophoresis procedure has been developed for the chiral determination of pheniramine in eye drop. Native and derivative cyclodextrins (CDs) including γ-CD, β-CD, hydroxypropyl-β-CD and dimethyl-β-CD were tested as chiral selectors. Using 30 mM hydroxypropyl-β-CD in 50 mM phosphate buffer (pH 3.0), the acceptable resolution value (R = 1.55) was obtained. The assay was validated for linearity (3.3 × 10−6–5.0 × 10−4 M; R 2 = 0.9996), limit of detection (3.3 × 10−6 M), limit of quantification (8.5 × 10−6 M), analytical precision by terms of intra- and inter-day variability (RSD ≤ 2.57%), and accuracy (recovery ≥ 89.3%). The content of pheniramine in eye drop obtained by the proposed method was in good agreement with the declared value. The results indicated that pheniramine in the eye drop was present as the racemate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号