首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The enthalpies of solvation of four geometric isomers of 2,5-dimethyl-1-phenyl-1-thioxophosphorinan-4-one in chloroform, nitrobenzene, and methanol were calculated using the enthalpies of vaporization of the isomers determined by the modified Solomonov—Konovalov method from the enthalpies of solution of the compounds in CCl4 andp-xylene and molar refractions. The enthalpies of formation (ΔH f o) of the isomers in the condensed and gas phase were assessed in the framework of Benson's group additivity scheme by summing the ΔH f o values for phosphacycloketone fragments obtained from molecular mechanics calculations with the contributions of the phenyl group and S atom attached to the P atom. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1533–1536, September, 2000.  相似文献   

2.
The enthalpies of vaporization of different classes three-coordinated arsenic compounds have been determined according to their enthalpies of solution in hexane and molar refraction. The enthalpies of solvation of cyclic and acyclic As(III)-derivatives in hexane, carbon tetrachloride,p-xylene and pyridine are obtained and discussed. Part 6, see Ref. [1].  相似文献   

3.
A custom code for molecular dynamics simulations has been designed to run on CUDA‐enabled NVIDIA graphics processing units (GPUs). The double‐precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse‐grained and atomistic models, holonomic constraints, Nosé–Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard‐Jones and Gay‐Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n‐hexane/2‐propanol mixture; and a liquid crystal mesogen, 2‐(4‐butyloxyphenyl)‐5‐octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33–119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69–287 fold improvement and three GPUs yield a 101–377 fold speedup. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The enthalpies of combustion (ΔH comb) of five primary, secondary, and tertiary alkyl(aryl)arsines in the condensed state were calculated using the equation ΔH comb = −385.8–110.3N, where N is the number of bond-forming electrons. The dependence presented is used for the calculation of the enthalpies of combustion of full esters and amidoesters of arsinous acid of noncyclic and cyclic structures. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1042–1043, May, 2007.  相似文献   

5.
6.
Using electrochemical impedance spectroscopy (EIS) and scanning electronic microscopy (SEM), this paper evaluated the inhibition effect of four 2,5‐diaryl‐1,3,4‐thiadiazole and its derivatives named 2,5‐diphenly‐1,3,4‐thiadiazole (DPTD), 2,5‐di(2‐hydroxyphenly)‐1,3,4‐thiadiazole (2‐DHPTD), 2,5‐di(3‐hydroxyphenly)‐1,3,4‐thiadiazole (3‐DHPTD), and 2,5‐di(4‐hydroxyphenly)‐1,3,4‐thiadiazole (4‐DHPTD) on silver strip corrosion in 50 mg/l sulfur–ethanol solution under room temperature. The experiments indicated that the inhibition efficiency increased with increasing inhibitor concentrations, and the increasing order was (4‐DHPDT) > (3‐DHPDT) > (2‐DHPDT) > (DPDT). Quantum chemical calculation was applied to correlate inhibition performances with their electronic structural parameters of thiadiazole derivatives. Molecular dynamics simulations (DFT) were used to optimize the equilibrium configurations of the inhibitor molecules on the silver surface and to investigate the molecular structure effect on the corrosion inhibition efficiency. The efficiency order of the investigated inhibitors, which was obtained by experimental results, was verified by theoretical calculations. Contact angle (CA) analysis was also carried out, and finally confirmed the existence of the adsorbed film which prevailed in addition of thiadiazole derivatives. CA analysis indicated that the film of n‐DHPTD (n = 2,3,4) was hydrophilic, owing to two hydroxyl groups in their molecular. The adsorption of these compounds onto silver strip from 50 mg/l S‐ethanol system obeys Langmuir adsorption isotherm, and it belongs to mixed‐type adsorption mainly dominated by chemisorption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   

8.
Equilibrium and non‐equilibrium molecular dynamics simulations of flexible polymer chains absorbed on heterogeneous surfaces are presented. The surfaces are flat but energetically disordered, consisting of a random mixture of weakly and more strongly absorbing sites (94 and 6%, respectively). For comparison, the two corresponding homogeneous surfaces are also simulated. This apparently weak energetic disorder can produce significant changes of the chain statistics, equilibrium dynamics, and non‐equilibrium response to a horizontal pulling force. On the disordered surfaces, the polymer–surface effective friction coefficient becomes strongly force‐dependent, as the dominant mode of motion changes from localized stick–slip events to smooth and continuous sliding. This is strongly reminiscent of the Schallamach model of rubber friction and the Maier–Göritz picture of the Payne effect in filled elastomers.

  相似文献   


9.
The enthalpies of vaporization of different classes of phosphorylated alcohols and amines were determined from their enthalpies of solution in hexane and carbon tetrachloride. The enthalpies of specific (hydrogen-bond) interaction with the solvents (chloroform and pyridine) of derivatives containing X-H groups (X=O or N) in the α-position to the P=O group were determined. The results were explained in terms of the spatial structure of such compounds. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
11.
The standard molar enthalpies of formation H f 00B0; (liq) at the temperature t = 298.15 K were determined using combustion calorimetry for N-methyl-3-methyl-3-phenyl-2-butaneamine 1a, N,N-dimethyl-3-methyl-3-phenyl-2-butaneamine 1b N-methyl-2,3-dimethyl-3-phenyl-2-butaneamine 2a, and N,N-dimethyl-2,3-dimethyl-3-phenyl-2-butaneamine 2b. The standard molar enthalpies of vaporization H vap 00B0; of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. The following standard molar enthalpies of formation in gaseous phase H f 00B0; (g) are obtained from these data: for 1a – 10.9 ± 1.9; 1b – 3.6 ± 1.8; 1c – 26.6 ± 1.4, and 1d – 23.0 ± 1.8 kJ mol–1. From the standard molar enthalpies of formation for gaseous compounds which are available in the literature, improved values for the increments of the Benson group addivitiy scheme of amines were calculated. They are used to determine the strain enthalpies of the amines 1 and 2 from this investigation.  相似文献   

12.
The quasichemical group surface interaction method was tested for its ability to correlate and predict vapor-liquid equilibrium (VLE) and molar excess enthalpy (H E ) in binary systems 1-octyne-1-propanol, 1-nonyne-1-propanol, 1-nonyne-1-butanol, 1-butylcyclopentene-nonane, 1-butylcyclopentene-1-butanol and 3-ethylcyclopentene-1-butanol. All computations involve using the few sets of group parameters obtained for CHC/OH by a change of the number of H E experimental points and the minimization function. For alkylcyclopentene systems, acyclic C=C group parameter as well as those of cyclic C=C and special cyclopentene groups have been used. The results have been compared with those obtained previously by the Wilson and UNIFAC methods.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990  相似文献   

13.
    
Total scattering structure factors of per-deuterated methanol and heavy water, CD3OD and D2O, have been determined across the entire composition range as a function of pressure up to 1.2 GPa, by neutron diffraction. The largest variations due to increasing pressure were observed below a scattering variable value of 5 Å−1, mostly as shifts in terms of the positions of the first and second maxima. Molecular dynamics computer simulations, using combinations of all-atom potentials for methanol and various water force fields, were conducted at the experimental pressures with the aim of interpreting neutron diffraction results. The peak-position shifts mentioned above could be qualitatively reproduced by simulations, although in terms of peak intensities, the accord between neutron diffraction and molecular dynamics was much less satisfactory. However, bearing in mind that increasing pressure must have a profound effect on repulsive forces between neighboring molecules, the agreement between experiment and computer simulation can certainly be termed as satisfactory. In order to reveal the influence of changing pressure on local intermolecular structure in these “simplest of complex” hydrogen-bonded liquid mixtures, simulated structures were analyzed in terms of hydrogen bond-related partial radial distribution functions and size distributions of hydrogen-bonded cyclic entities. Distinct differences between pressure-dependent structures of water-rich and methanol-rich composition regions were revealed.  相似文献   

14.
The standard enthalpies of combustion c H o of aliphatic diacetates1 and aromatic diacetates2 were measured calorimetrically. The enthalpies of vaporization vap H o or sublimation sub H o of1 and2 were obtained from the temperature function of the vapor pressure measured in a flow system. From f H o(g) of1 and2 new values of group increments for the estimation of standard enthalpies of formation of these classes of compounds were derived. The geminal interaction energy between the geminal acyloxy groups shows no anomeric stabilization.Geminal Substituent Effects, Part 12, for part 11 see Ref. 7.  相似文献   

15.
The unsaturated and saturated pressures of gallium trichloride vapor were measured by the static method with membrane-gauge manometers in wide pressure (0.2–760 Torr) and temperature (313–1071 K) intervals. Scanning calorimetry was used to determine the thermodynamic characteristics of GaCl3 fusion. The thermodynamic characteristics were obtained for sublimation, fusion, vaporization, and association in the vapor of GaCl3 molecules. The enthalpies of formation and the absolute entropies of GaCl3 in the liquid and gaseous phases and Ga2Cl6 in the gaseous phase were calculated using literature data. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1266–1269, July, 2007.  相似文献   

16.
Ibuprofen has been subjected to a TG/DTA study over the temperature range of 30 to 350°C in a flowing atmosphere of nitrogen. The heating rate and the flow rate were varied. The DTA shows a melting at around 80°C and boiling point range from 212 to 251°C depending upon the heating rate. The mass loss in the TG data confirms the evaporation of Ibuprofen between them.p. and the normalb.p. Evaporation is limited to the surface area, which is a constant in the crucible holding the sample. The DTG plot shows clearly a zero order process which is consistent with the process of evaporation. The enthalpy of vaporization (vap H) calculated by Trouton's rule is found to be in the range of 42.7–46.1 kJ mol–1. TheE act for the zero order reaction is in the range of 81.8–87.0 kJ mol–1 and is calculated by use of the derivative method. The value ofE act is about twice that for H vap in Ibuprofen and differs from other compounds, whereE act H vap . It is suggested that the Ibuprofen molecule is existing as a dimer in the liquid state and dissociates to a monomer in the vapor state.  相似文献   

17.
The standard (p o=0.1 MPa) molar enthalpies of combustion atT=298.15 K were measured by static bomb combustion calorimetry for liquidN,N-diethylaniline,N,N-dimethyl-m-toluidine,N,N-dimethyl-p-toluidine, andN-ethyl-m-toluidine. Vaporization enthalpies forN,N-dimethyl-m-toluidine andN-ethyl-m-toluidine were determined by correlation gas chromatography. Derived standard molar values of f H m o (g) at 298.15 K forN,N-diethylaniline (62.1±7.6);N,N-dimethyl-m-toluidine (72.6±7.3),N,N-dimentyl-p-toluidine (68.9±7.4),N-ethyl-m-toluidine (30.5±3.8 kJ· mol–1) were obtained.  相似文献   

18.
A simple method for the calculation of the enthalpy of solvation is presented and demonstrated for 35 n-alkane + n-alkane solutions at 25°C. There is a good agreement between the predicted and experimental values. The calculation was based on the separation of the solvation enthalpy into the cavity formation and solute-solvent interaction contributions. The former term was determined from the activation enthalpy of the solvent viscous flow and solute molar volume while the latter on the basis of the dispersion energy using van der Waals diameters for n-propyl group. The procedure was also successful in prediction of the vaporization enthalpy of C5–C17 n-alkanes.  相似文献   

19.
环糊精对超分子化学的发展具有重要意义,其特殊的物理和化学性质已经在实验和理论研究中受到广泛关注。本文对近10年来环糊精的理论计算发展情况进行了综述。重点概述了分子动力学模拟结合自由能计算方法在环糊精识别和自组装行为中的应用,最后展望了环糊精未来的理论计算发展方向。  相似文献   

20.
We present a practical numerical method for evaluating the Lagrange multipliers necessary for maintaining a constrained linear geometry of particles in dynamical simulations. The method involves no iterations and is limited in accuracy only by the numerical methods for solving small systems of linear equations. As a result of the non-iterative and exact (within numerical accuracy) nature of the procedure, there is no drift in the constrained geometry, and the method is therefore readily applied to molecular dynamics simulations of, for example, rigid linear molecules or materials of non-spherical grains. We illustrate the approach through implementation in the commonly used second-order velocity-explicit Verlet method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 911-916, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号