首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrochemical sensor based on raffia derived porous carbon (RPC) and polyaniline (PANI) composite functional glass carbon electrode (GCE) was constructed for imidacloprid (IMI) determination. PANI nanowire arrays were deposited on RPC surface uniformly without aggregations. The electrochemical response of IMI at RPC@PANI/GCE is about four times than that at bare GCE, indicating high electrocatalytic activity of RPC@PANI towards IMI reduction. The prepared sensor also offers a wide linear range of 0.1–70 μg mL−1 for IMI determination with a limit of detection (LOD) of 0.03 μg mL−1. In addition, it offers high recoveries with testing real samples.  相似文献   

2.
Nanostructured NiCu layered double hydroxides (NiCu LDHs) are synthesized in situ on polypyrrole nanotubes through convenient co-precipitation and hydrothermal synthesis. The nanostructured composite (NiCu LDHs/PPy) shows high electrocatalytic activities towards the glucose oxidation reaction in alkaline electrolyte so that a nonenzymatic glucose sensor is developed. It is demonstrated that the sensor offers a wide linear range from 1.5 μM to 1.0 mM with a high sensitivity of 525.8 μA mM−1 cm−2 and a low limit of detection of 66 nM (S/N = 3). The nonenzymatic sensor has been successfully applied to real blood samples for glucose monitoring with high accuracy.  相似文献   

3.
《Electroanalysis》2017,29(5):1434-1442
Silver nanospheres (AgNS) with SPR band ∼417 nm was synthesized by Green synthesis, using a pre‐hydrolysed liquor (PHL) of Nilgiri wood without any pretreatment. The synthesis was carried out at room temperature and was complete within three hours. The reduction and stabilization of silver is brought about by hemicelluloses present in the pre‐hydrolysed liquor. Electrochemical oxidation of nitrite on glassy carbon electrode (GCE) modified with the AgNS in 0.1 M phosphate buffer solution (PBS) of pH 7.0 was found to occur at 0.86 V with respect to Ag/AgCl. Electrochemical sensing experiments with AgNS/GCE showed a linear range of detection between 0.1 to 8 μM, with detection limit of 0.031 μM and a sensitivity of 580 μA mM−1cm−2.  相似文献   

4.
At present, a highly sensitive hydrogen peroxide (H2O2) sensor is fabricated by ferrocene based naphthaquinone derivatives as 2,3‐Diferrocenyl‐1,4‐naphthoquinone and 2‐bromo‐3‐ferrocenyl‐1,4‐naphthoquinone. These ferrocene based naphthaquinone derivatives are characterized by H‐NMR and C‐NMR. The electrochemical properties of these ferrocene based naphthaquinone are investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) on modified glassy carbon electrode (GCE). The modified electrode with ferrocene based naphthaquinone derivatives exhibits an improved voltammetric response to the H2O2 redox reaction. 2‐bromo‐3‐ferrocenyl‐1,4‐naphthoquinone show excellent non‐enzymatic sensing ability towards H2O2 response with a detection limitation of 2.7 μmol/L a wide detection range from 10 μM to 400 μM in H2O2 detection. The sensor also exhibits short response time (1 s) and good sensitivity of 71.4 μA mM?1 cm?2 and stability. Furthermore, the DPV method exhibited very high sensitivity (18999 μA mM?1 cm?2) and low detection limit (0.66 μM) compared to the CA method. Ferrocene based naphthaquinone derivative based sensors have a lower cost and high stability. Thus, this novel non‐enzyme sensor has potential application in H2O2 detection.  相似文献   

5.
A novel metal composite material based on zirconium dioxide decorated gold nanoparticles (ZrO2@AuNPs), copper (I) oxide at manganese (IV) oxide (Cu2O@MnO2) and immobilized choline oxidase (ChOx) onto a glassy carbon electrode (GCE) (ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE) has been developed for enhancing the electro-catalytic property, sensitivity and stability of the amperometric choline biosensor. The ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE displayed an excellent electrocatalytic response to the oxidation of the byproduct H2O2 from the choline catalyzed reaction, which exhibited a charge transfer rate constant (Ks) of 0.97 s−1, a diffusion coefficient value (D) of 4.50×10−6 cm2 s−1, an electroactive surface area (Ae) of 0.97 cm2 and a surface concentration (γ) of 0.54×10−8 mol cm−2. The modified electrode also provided a wide linear range of choline concentration from 0.5 to 1,000.0 μM with good sensitivity (97.4 μA cm−2 mM−1) and low detection limit (0.3 μM). The apparent Michaelis-Menten constant was found to be 0.08 mM with Imax of 0.67 μA. This choline biosensor presented high repeatability (%RSD=2.9, n=5), excellent reproducibility (%RSD=2.9, n=5), long time of use (n=28 with %I>50.0 %) and good selectivity without interfering effects from possible electroactive species such as ascorbic acid, aspirin, amoxicillin, caffeine, dopamine, glucose, sucrose and uric acid. This optimal method was successfully applied for choline measurement in prepared human blood samples which demonstrated accurate and excellent reliability in the recovery range from 96.7 to 102.0 %.  相似文献   

6.
A comparison of the analytical performances of four different (bio)sensor designs in H2O2 determination is discussed. The (bio)sensor designs developed were based on the use of (i) multiwalled carbon nanotubes (MWCNT), zinc oxide nanoparticles (ZnONP), prussian blue (PB); (ii) MWCNT, ZnONP, PB and ionic liquid (IL); (iii) MWCNT, ZnONP and horseradish peroxidase (HRP) and (iv) MWCNT, ZnONP, HRP and IL modified glassy carbon electrode (GCE). A performance comparison of (bio)sensors showed that the one based on HRP/IL-MWCNT-ZnONP/GCE showed the best analytical characteristics with a linear dynamic range of 9.99×10−8–7.55×10−4 M, detection limit of 1.37×10−8 M and sensitivity of 17.00 μA mM−1.  相似文献   

7.
《Electroanalysis》2017,29(12):2727-2736
Novel organophilic nanohybrid materials (K‐TDD) were obtained by the grafting of 1,2‐tetradecanediol (TDD) onto the surface of kaolinite (K). XRD, IR, TGA‐DTG, and SEM characterization showed that TDD grafting results in a partial exfoliation of kaolinite layers. This material was used to modify a glassy carbon electrode (GCE/K‐TDD) and applied for the trace analysis of methyl parathion (MP). The signal of MP recorded on GCE/K‐TDD was more intense compared to the unmodified GCE or to one modified with a film of natural kaolinite. Several parameters that can affect the stripping response were systematically investigated to optimize the sensitivity of the organokaolinite‐modified electrode. A linear calibration curve for MP was obtained in the concentration range from 2×10−6 to 14×10−6 mol .L−1 in acetate buffer (pH 6), giving a detection limit of 9×10−8 mol .L−1. The sensitivity of the method was found to be 2.42 μA/μM for the range of concentrations that gives a linear calibration curve. The electrode was shown to be very stable, with the electrochemical response of MP decreasing by only 1.5 % after a series of nine measurements. The interference of various inorganic ions and organic compounds likely to influence the stripping determination of the MP were also examined. The results showed that the GCE/K‐TDD electrode was effective in solutions containing interfering species and could be applied for the quantification of MP pesticide in natural water.  相似文献   

8.
《Electroanalysis》2017,29(8):1950-1960
Herein, we are described a green route to prepare reduced graphene oxide supported cobalt inorganic complex nanocomposite (GRGO/[Co(bpy)3]) (bpy=2,2′‐bipyridine) through facile and wet chemical approach. The formation of the nanocomposite was confirmed through suitable physical and chemical characterization techniques. The GRGO/[Co(bpy)3] nanocomposite was coated on the pretreated glassy carbon electrode (GCE). The GCE/GRGO/[Co(bpy)3] modified electrode has excellent electrocatalytic ability towards methyl parathion reduction, while the overpotential drops drastically to –0.18 V (vs. Ag/AgCl). Moreover, the effect of concentration, scan rate and electrolyte pH were detail studied. Besides, the linear response range was 0.05‐1700 μM and the detection limit was 0.0029 μM (S/N=3) and the sensitivity was 1.8197 μA μM−1 cm−2. Moreover, the fabricated electrode has high level of selectivity, which delivers satisfactory repeatability, reproducibility and stability. The sensing method was successfully demonstrated in real samples such as, tomato and apple samples.  相似文献   

9.
Herein, co-electrodeposition of AuNPs and ERGO onto GCE was conducted to prepare the modified electrode, GCE/AuNPs-ERGO. The poly(indole-5-carboxylic acid) (P(In-5-COOH) was then coated onto the GCE/AuNPs-ERGO with the help of electropolymerization. FT-IR, FE-SEM and EDX, and XRD techniques were employed to characterize the prepared nanocomposite. The nanocomposite modified electrode (GCE/AuNPs-ERGO/P(In-5-COOH)) was examined for the electrochemical reduction of H2O2 using chronoamperometry. A high reduction current for H2O2 was observed due to the synergistic effect between AuNPs-ERGO and P(In-5-COOH). The proposed sensor demonstrated a wide linear range of 0.025–750 μmol L−1, with a LOD of 0.008 μmol L−1 at −0.4 V. Furthermore, the developed sensor was applied for the detection of H2O2 in fetal bovine serum and urine samples.  相似文献   

10.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

11.
《Electroanalysis》2017,29(12):2689-2697
Stable and well dispersed nickel nanoparticles (NiNPs) were fabricated and embedded in a novel polymer sulfonate and benzimidazole functionalized poly (arylene ether ketone) (S‐BI‐PAEK) film. After drop‐casting the mixed solution of S‐BI‐PAEK and NiSO4 on glassy carbon electrode (GCE) surface, the uniformly distributed NiNPs were formed and stably embedded in S‐BI‐PAEK film by in‐situ electrochemical reduction method. The embedment and well dispersity of NiNPs in S‐BI‐PAEK film was probably attributed to the strong chelation of sulfonate and benzimidazole functional groups contained in S‐BI‐PAEK toward Ni2+ ions, as well as the transferability of Ni2+ ions in S‐BI‐PAEK film. The NiNPs/S‐BI‐PAEK composite film was characterized by scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It exhibited good electrocatalytic activity toward glucose oxidation in 0.1 mol L−1 NaOH solution with high stability. The NiNPs/S‐BI‐PAEK/GCE showed a fast amperometric response with a wide linear range from 1 μM to 4 mM and a low detection limit of 200 nmol L−1 (S/N=3) for the determination of glucose by amperometry at a potential of 0.55 V. Finally it was successfully employed to determine glucose in human serum. Therefore, the novel fabrication method of nickel nanoparticles was promising for the future development of non‐enzymatic glucose sensor.  相似文献   

12.
The hierarchical three-dimensional nitrogen-doped carbon nanotube anchored bimetallic cobalt copper organic framework (NCNT MOF CoCu) is successfully synthesized by the direct growth approach using the high-temperature carbonization of bimetallic cobalt copper organic framework (MOF CoCu-500). The as-prepared NCNT MOF CoCu nanostructure possesses high-level activity for both glucose and hydrogen peroxide (H2O2) sensing molecules. The cyclic voltammetry (CV) and chronoamperometry (CA) studies demonstrate excellent electrocatalytic performance for the oxidation of glucose with a linear range of 0.05 to 2.5 mM, high sensitivity of 1027 μA mM−1cm−2, and the lowest detection limit of 0.15 μM. Similarly, the NCNT MOF CoCu nanostructure showed significantly higher H2O2 activity with a linear range of 0.05 to 3.5 mM, high sensitivity of 639.5 μA mM−1cm−2, and the lowest detection limit of 0.206 μM. Thanks to its special hierarchical nanoarchitecture, homogeneous nitrogen-doped carbon nanotubes, and highly graphitized carbon, which may be increased the synergistic effect between bimetallic CoCu and NCNT in the organic framework. The potentially effective fabricated sensor was also used as a suitable probe for the detection of glucose and H2O2 in the analysis of the real samples.  相似文献   

13.
A novel enzymatic biosensing platform toward glucose is achieved with nanocomposite of magnetic nanoparticles (Fe3O4−CS−CD) and multi-walled carbon nanotubes (MWCNTs). The synergistic effect of chitosan, β-cyclodextrin and MWCNTs can facilitate electron transfer between enzyme and electrode based on the promoting results of the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The new biosensors exhibited direct electron transfer (DET) from enzyme to electrode after glucose oxidase (GOx) was immobilized on the modified electrode with the nanocomposite. Consequently, the enzymatic glucose biosensor displayed a considerably wide linear range (40 μM to 1.04 mM) with a high sensitivity of 23.59 μA mM−1cm−2, low detection limit of 19.30 μM, good selectivity, reproducibility and repeatability for detecting glucose. In addition, the current response still retained at 93.4 % after 25 days. Furthermore, the practical application of glucose biosensor was test in human serum samples with satisfactory accuracy, demonstrating promising and practical potential in biomedical diagnostics.  相似文献   

14.
《Electroanalysis》2017,29(10):2385-2394
In this present scenario, for the first time, we propose a facile and simple wet chemical approach for the fabrication of two‐dimensional (2D) cerium tungstate (CeW2O9;CeW) nanosheets and evaluated as an electrochemical sensor for the detection of nitrite ions. The successful formation of CeW2O9 nanosheets was confirmed by various physicochemical techniques such as X‐ray diffraction, Fourier transform infrared spectroscopy, Raman, Scanning electron microscope, Transmission electron microscope and Energy dispersive X‐ray studies. The electrochemical properties of the CeW nanosheets were studied by using cyclic voltammograms (CV) and chronoamperometric techniques. As an electrochemical sensor, the CeW nanosheets modified glassy carbon electrode (GCE) showed superior electrocatalytic activity in the oxidation of nitrite in terms of higher anodic peak current and lower oxidation potential when compared with unmodified GCE. CeW nanosheets based electrochemical sensor has been fabricated which detect nitrite in wide linear response range, good sensitivity and very low detection limit of 0.02–986 μM, 2.85 μA μM−1 cm−2 and 8 nM, respectively. Moreover, the CeW nanosheets modified GCE exhibited excellent selectivity even in the presence of common metal ions and biologically co‐interfering compounds. For the practical viability of the prepared amperometric sensor has been utilized in various water samples such as tap, lake and drinking water and the obtained recoveries are appreciable.  相似文献   

15.
《Electroanalysis》2018,30(3):445-452
A simple and attentive method was attempted for the determination of endocrine disruptor molecule, Bisphenol A (BPA) using residual metal impurity act as a reactant present in as received SWCNT. The electrochemical behavior of BPA oxidation and its reaction mechanism was investigated by cyclic voltammetry using “as received SWCNT modified on glassy carbon electrode” (SWCNT/GCE) and the obtained results were compared with bare GCE. The SWCNT/GCE showed high electrocatalytic activity, sensitivity, stability and more importantly not much surface fouling compared with bare GCE. This is because of the formation of electroactive quinone and catechol as byproducts on SWCNT/GCE during electro‐oxidation of BPA. More interestingly, the electrochemically acid treated SWCNT/GCE not showed any characteristic oxidation and reduction peaks during electro‐oxidation of BPA which indicates that the presence of a residual metal impurity in SWCNT plays a vital role in electro‐oxidation of BPA. The amperometric detection of BPA oxidation on SWCNT/GCE showed excellent stability and good linear response from the wide range of concentration of 10–100 μM. The limit of detection and sensitivity of BPA electro‐oxidation on SWCNT/GCE is to be 7.3 μM (S/N=3) and 0.6494 μA/μM cm2 respectively. Finally, the fabricated sensor using SWCNT/GCE was successfully applied for the detection of BPA in plastic water bottles with excellent recovery range from 98–102 %.  相似文献   

16.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

17.
Determination of glucose plays very important part in diagnostics and management of diabetes. Nowadays, determination of glucose is necessary in human health. In order to develop the glucose biosensor, polymer modified catalytic composites were fabricated and used to detect glucose molecules. In this work, NiO nanostructure metal oxide (NMO) was fabricated via thermal decomposition method and polyaniline (wt% = 2, 4 and 6) assisted nanocomposites (NiO/PANI) were also prepared. The morphology and structure of synthesized nanocomposites were characterized by UV–visible diffusion reflectance spectroscopy (UV–vis-DRS), Fourier transform- infra red spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption isotherm measurement. The modified NiO/6%PANI/GCE had higher catalytic activity toward the oxidation of glucose than NiO/GCE, PANI/GCE, NiO/2%PANI/GCE and NiO/4%PANI/GCE. This is due to the larger surface area of NiO/6%PANI nanocomposites provide a ploform for faster electron transfer to the detection of glucose. The constructed glucose biosensor have been exhibited a high sensitivity of 606.13 µA mM−1 cm−2, lowest detection limit of 0.19 µM, high selectivity, stability, simplicity and low cost for the quick detection of glucose in real sample as well.  相似文献   

18.
3-dimensional (3D) Fe−Co−LDH/MXene composite was synthesized by in-situ synthesis and assembly of Fe−Co−LDH rod around MXene under hydrothermal condition. Due to the unique 3D configuration and good conductivity, the obtained Fe−Co−LDH/MXene modified glassy carbon electrode (Fe−Co−LDH/MXene/GCE) showed excellent electrochemical activity for As(III) detection. Via square-wave anodic stripping voltammetry, the response current on Fe−Co−LDH/MXene/GCE had good linear relationship with As(III) concentrations (1∼1000 ppt) with superior sensitivity (0.22 μA ppt−1 cm−2) and low detection limit (0.9 ppt). The mechanism of As(III) adsorption was demonstrated. The electrode showed excellent anti-interference ability. Real water sample analysis demonstrated the Fe−Co−LDH/MXene/GCE was deployable in aqua-system.  相似文献   

19.
We report a method for the fabrication of glassy carbon electrode modified porous graphene-polypyrrole-polyphenol oxidase (GCE−PG−PPy−PPO) modified electrode for the determination dopamine. The optimization of pH, concentration and detection limit of dopamine was employed by amperomatric technique. The detection limit of dopamine was found to be in a linear range of 2×10−8 to 4.6×10−5 M and lower limit detection is 4×10−9 M. Michealis – Menten constant (Km) and the activation energy were calculated as 31.32 μM and 37.4−Kj mol−1, respectively. The developed biosensor was used to quantify the dopamine in human urine sample.  相似文献   

20.
A novel electrochemical sensor on ZIF-8 nanocomposites (Ag/ZnO/ZIF-8) was developed to analyze the mercury ions (Hg2+). The ZIF-8 materials are one of the 3-dimensional porous metal-organic frameworks with highly accessible pores and great surface area. The ZIF-8 nanocomposites were prepared through simple sol-gel methods and their physio-chemical properties were characterized via different analytical analyses. As a result of cyclic voltammetry, Ag/ZnO/ZIF-8 exhibited a better electrocatalytic behavior towards the detection of mercury ions (Hg2+). Furthermore, the composite modified electrode was then inspected as a sensor for DPV detection of mercury ions. The nanocomposite sensor performed a wide linear range from 0.5 μM to 140 μM with a low detection limit of 40 nM, and high sensitivity of 56.06 μA μM−1 cm−2. Moreover, the ZIF-8 composite sensor showed a higher selectivity toward the detection of mercury ions (Hg2+). The real-time applications of the ZIF-8 composites sensor were inspected in various samples with good sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号