首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusioosmotic flows in slit nanochannels   总被引:1,自引:0,他引:1  
Diffusioosmotic flows of electrolyte solutions in slit nanochannels with homogeneous surface charges induced by electrolyte concentration gradients in the absence of externally applied pressure gradients and potential differences are investigated theoretically. A continuum mathematical model consisting of the strongly coupled Nernst-Planck equations for the ionic species' concentrations, the Poisson equation for the electric potential in the electrolyte solution, and the Navier-Stokes equations for the flow field is numerically solved simultaneously. The induced diffusioosmotic flow through the nanochannel is computed as functions of the externally imposed concentration gradient, the concentration of the electrolyte solution, and the surface charge density along the walls of the nanochannel. With the externally applied electrolyte concentration gradient, a strongly spatially dependent electric field and pressure gradient are induced within the nanochannel that, in turn, generate a spatially dependent diffusioosmotic flow. The diffusioosmotic flow is opposite to the applied concentration gradient for a relatively low bulk electrolyte concentration. However, the electrolyte solution flows from one end of the nanochannel with a higher electrolyte concentration to the other end with a lower electrolyte concentration when the bulk electrolyte concentration is relatively high. There is an optimal concentration gradient under which the flow rate attains the maximum. The induced flow is enhanced with the increase in the fixed surface charge along the wall of the nanochannel for a relatively low bulk electrolyte concentration.  相似文献   

2.
Movahed S  Li D 《Electrophoresis》2011,32(11):1259-1267
This article presents a numerical study of the electrokinetic transport phenomena (electroosmosis and electrophoresis) in a three-dimensional nanochannel with a circular cross-section. Due to the nanometer dimensions, the Boltzmann distribution of the ions is not valid in the nanochannels. Therefore, the conventional theories of electrokinetic flow through the microchannels such as Poisson-Boltzmann equation and Helmholtz-Smoluchowski slip velocity approach are no longer applicable. In the current study, a set of coupled partial differential equations including Poisson-Nernst-Plank equation, Navier-Stokes, and continuity equations is solved to find the electric potential field, ionic concentration field, and the velocity field in the three-dimensional nanochannel. The effects of surface electric charge and the radius of nanochannel on the electric potential, liquid flow, and ionic transport are investigated. Unlike the microchannels, the electric potential field, ionic concentration field, and velocity field are strongly size-dependent in nanochannels. The electric potential gradient along the nanochannel also depends on the surface electric charge of the nanochannel. More counter ions than the coions are transported through the nanochannel. The ionic concentration enrichment at the entrance and the exit of the nanochannel is completely evident from the simulation results. The study also shows that the flow velocity in the nanochannel is higher when the surface electric charge is stronger or the radius of the nanochannel is larger.  相似文献   

3.
One-dimensional (1D) nanowire field-effect transistors (FETs) have recently played a major role in sensing applications. Due to charging of the surface functional chemical groups with protonation and deprotonation, the transport properties of these nanowire transistors affect the aqueous environment, altering the electrical double layer (EDL) potential drops and charge distributions in the electrolyte concentration. In this work, we have implemented the simple modified Poisson–Boltzmann (MPB) theory in a 1D silicon nanowire FET, and the effect of the various finite sizes of ions in z:z symmetric electrolyte concentration was investigated. For a given ionic concentration and surface charge, the EDL potential drop, accumulation of charges and the charge distributions of NaCl and CsCl ions were studied. From the MPB model results with the nanowire FET, it was observed that the potential drop of the EDL depends on the size of the ions in the electrolyte. The study of various electrostatic investigations of finite-sized ions was successfully done by implementing the MPB model on a silicon nanowire FET. It can be used in both chemical and biological sensors.  相似文献   

4.
In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics.  相似文献   

5.
This study analytically examines the steady diffusioosmotic and electroosmotic flows of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed polyelectrolytes. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The electrostatic potential distribution on a cross section of the slit is obtained by solving the linearized Poisson–Boltzmann equation, which applies to the case of low potentials or low fixed-charge densities. Explicit formulas for the fluid velocity profile due to the imposed electrolyte concentration gradient or electric field through the slit are derived as the solution of a modified Navier–Stokes/Brinkman equation. The results demonstrate that the structure of the surface charge layer can lead to an augmented or a diminished electrokinetic flow (even a reversal in direction of the flow) relative to that in a capillary with bare walls, depending on the characteristics of the capillary, of the surface charge layer, and of the electrolyte solution. For the diffusioosmotic flow with an induced electric field, competition between electroosmosis and chemiosmosis can result in more than one reversal in direction of the flow over a range of the Donnan potential of the adsorbed polyelectrolyte in the capillary.  相似文献   

6.
We have investigated the basic dependence of electroosmotic flow (EOF) velocity and hydrodynamic dispersion in capillary electrochromatography (CEC) on the variation of applied field and mobile phase ionic strengths employing silica-based particulate and monolithic fixed beds. These porous media have a hierarchical structure characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains. While the macroporous domains contain quasi-electroneutral electrolyte solution, the ion-permselectivity (charge-selectivity) of the mesoporous domains determines the co-ion exclusion and counter-ion enrichment at electrochemical equilibrium (without superimposed electrical field) which depends on mesopore-scale electrical double layer (EDL) overlap and surface charge density. This adjustable, locally charge-selective transport realized under most general conditions forms the basis for concentration polarization (CP) induced by electrical fields superimposed in CEC. CP characterizes the formation of convective diffusion boundary layers with reduced (depleted CP zone) and increased (enriched CP zone) electrolyte concentration, respectively, at the anodic and cathodic interfaces in fixed beds containing the cation-selective, silica-based particles (or monolith skeleton). CP originates in the electrical field-induced coupled mass and charge transport normal to the charge-selective interfaces and has consequences for the EOF dynamics, hydrodynamic dispersion, and analyte retention in CEC. A secondary EDL with mobile counter-ionic space charge can be induced in the depleted CP zone leading to induced-charge EOF in the macroporous domains. It is characterized by a nonlinear dependence of the average EOF velocities on applied field strength and strong local velocity components tangential to the surface which enhance lateral pore-scale dispersion, thereby decreasing (axial) zone spreading. Differences in the pore space morphology of random-close sphere packings and monoliths criticially affect the intensity of CP and induced-charge EOF in these materials. CP is identified as a key phenomenon in CEC which also influences effective migration and the retention of charged analytes because the local intensity of CP inherently depends on applied field and mobile phase ionic strengths.  相似文献   

7.
Ion concentration polarization (ICP) imposes remarkable adverse effects on the energy conversion performance of the pressure-driven electrokinetic (EK) flows through a capillary system that can be equivalently treated as a battery. An optimized dimensionless numerical method is proposed in this study to investigate the causes and the effects of the ICP. Results show that remarkable ICP phenomena are induced under certain conditions such as high applied pressure, high surface charge density, and small inversed Debye length at dimensionless values of 6000, ‒10, and 0.5. Meanwhile, different factors influence the ICP and the corresponding electric properties in different ways. Particularly for the overall electric resistance, the applied pressure and the surface charge density mainly affect the variation amplitude and the level of the overall electric resistance when varying the output electric potential, respectively. Differently, the Debye length affects the overall electric resistance in both aspects. Ultimately, the induced ICP leads to significant nonlinear current–potential curves.  相似文献   

8.
The concentration polarization phenomena and its effects represent one of the main challenges for the optimal operation of many nanofluidic systems. A numerical investigation of the different electric current transition regimes observed during the concentration polarization phenomena in nanochannels is performed. This included a 2D‐axisymmetric simulation of the nanofluidic system (reservoir‐nanochannel‐reservoir). From these simulations, a novel mechanism is discovered that explains that different current transition regimes. This driving mechanism involves the applied electric field penetration while the convective flow mechanism is found to be negligible. This differs with the classical statement that the mixing process with less depleted areas initiated by an electrokinetic vortex instability starts the overlimiting regime. Additionally, the numerical approach allows us to identify new characteristics of the linear‐limiting transition such as source‐like and saddle‐like points of the electric field streamlines. The three voltage–current regimes (linear, limiting and overlimiting) are explained by observing and quantifying changes in electric field, potential, ion concentration and ion concentration gradients within the system.  相似文献   

9.
The electrophoretic motion of a spherical nanoparticle, subject to an axial electric field in a nanotube filled with an electrolyte solution, has been investigated using a continuum theory, which consists of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. In particular, the effects of nonuniform surface charge distributions around the nanoparticle on its axial electrophoretic motion are examined with changes in the bulk electrolyte concentration and the surface charge of the tube's wall. A particle with a nonuniform charge distribution is shown to induce a corresponding complex ionic concentration field, which in turn influences the electric field and the fluid motion surrounding the particle and thus its electrophoretic velocity. As a result, contrary to the relatively simple dynamics of a particle with a uniform surface charge, dominated by the irradiating electrostatic force, that with a nonuniform surface charge distribution shows various intriguing behaviors due to the additional interplay of the nonuniform electro-osmotic effects.  相似文献   

10.
Electrokinetic transport and separations in fluidic nanochannels   总被引:1,自引:0,他引:1  
This article presents a summary of theory, experimental studies, and results for the electrokinetic transport in small fluidic nanochannels. The main focus is on the effect of the electric double layer on the EOF, electric current, and electrophoresis of charged analytes. The double layer thickness can be of the same order as the width of the nanochannels, which has an impact on the transport by shaping the fluid velocity profile, local distributions of the electrolytes, and charged analytes. Our theoretical consideration is limited to continuum analysis where the equations of classical hydrodynamics and electrodynamics still apply. We show that small channels may lead to qualitatively new effects like selective ionic transport based on charge number as well as different modes for molecular separation. These new possibilities together with the rapid development of nanofabrication capabilities lead to an extensive experimental effort to utilize nanochannels for a variety of applications, which are also discussed and analyzed in this review.  相似文献   

11.
We report a comprehensive formalism for the dynamics of metal speciation across an interphase formed between a complexing soft film layer and an electrolyte solution containing indifferent ions and metal ions that form complexes with charged molecular ligands distributed throughout the film. The analysis integrates the intricate interplay between metal complexation kinetics and diffusive metal transfer from/toward the ligand film, together with the kinetics of metal electrostatic partitioning across the film/solution interphase. This partitioning is determined by the settling dynamics of the interfacial electric double layer (EDL), as governed by time-dependent conduction-diffusion transports of both indifferent and reactive metal ions. The coupling between such chemodynamic and electrodynamic processes is evaluated via derivation of the dielectric permittivity increment for the ligand film/electrolyte interphase that is perturbed upon application of an ac electric field (pulsation ω) between electrodes supporting the films. The dielectric response is obtained from the ω-dependent distributions of all ions across the ligand film, as ruled by coupled Poisson-Nernst-Planck equations amended for a chemical source term involving the intra-film complex formation and dissociation pulsations (ω(a) and ω(d) respectively). Dielectric spectra are discussed for bare and film coated-electrodes over a wide range of field pulsations and Deborah numbers De = ω(a,d)/ω(diff), where ω(diff) is the electric double layer relaxation pulsation. The frequency-dependent dynamic or inert character of the formed metal complexes is then addressed over a time window that ranges from transient to fully relaxed EDL. The shape and magnitude of the dielectric spectra are further shown to reflect the lability of dynamic complexes, i.e. whether the overall speciation process at a given pulsation ω is primarily rate-limited either by complexation kinetics or by ion-transport dynamics. The limits, strengths and extensions of the approach are further discussed within the context of metal speciation dynamics at soft planar and particulate complexing interphases.  相似文献   

12.
Lab‐on‐chip devices employ EOF for transportation and mixing of liquids. However, when a steady (DC) electric field is applied to the liquids, there are undesirable effects such as degradation of sample, electrolysis, bubble formation, etc. due to large magnitude of electric potential required to generate the flow. These effects can be averted by using a time‐periodic or AC electric field. Transport and mixing of nonconductive liquids remain a problem even with this technique. In the present study, a two‐liquid system bounded by two rigid plates, which act as substrates, is considered. The potential distribution is derived by assuming a Boltzmann charge distribution and using the Debye–Hückel linearization. Analytical solution of this time‐periodic system shows some effects of viscosity ratio and permittivity ratio on the velocity profile. Interfacial electrostatics is also found to play a significant role in deciding velocity gradients at the interface. High frequency of the applied electric field is observed to generate an approximately static velocity profile away from the Electric Double Layer (EDL).  相似文献   

13.
Influence of transport properties in electric field gradient focusing   总被引:1,自引:0,他引:1  
Miniaturized devices for electric field gradient focusing (EFGF) were developed that consist of a cylindrical separation channel surrounded by an acrylic-based polymer hydrogel. The ionic transport properties of the hydrogel enable the manipulation of the electric field inside the separation channel. A changing cross-section design was used in which the hydrogel is shaped such that an electric field gradient is established in the separation channel. One of the challenges with this type of EFGF device has been that experimental resolution between protein analytes is lower than theoretically predicted. In order to investigate this phenomenon, a mathematical transport model was developed using FEMLAB. Model results and experimental observations showed that the reduced performance was caused by concentration gradients formed in the EFGF channel, and that these concentration gradients were the result of an imbalance in cation transport between the open separation channel and the hydrogel. Removing acidic impurities from the monomers that form the hydrogel reduced this tendency and improved the resolution. These transport-induced concentration gradients can be used to establish electric field gradients that may be useful for sample pre-concentration. Both the results of simulation and experiments demonstrate how transport-induced concentration gradients lead to the establishment of electric field gradients.  相似文献   

14.
In the first of this two-paper series, a new model was developed for calculating the electric potential field in a long, thin nanochannel with overlapped electric double layers. The model takes into account the dependence of ion mobility on local ion densities and pH. This model is used here to study and demonstrate the effect of ion density and pH on ionic current measurements. A comparison is shown of predictions based on each of three boundary conditions, as studied in Part I. The model developed in Part I is validated by comparing simulations with measurements of ionic current as a function of sodium borate concentration. Results show that predictions based on extended Debye-Hückel theory for ion mobility significantly improve the accuracy of simulations, but that these do not predict exact scaling behavior. A simple bulk conductivity measurement used as input parameter for the simulations, in place of the predicted bulk conductivity (K(0)), guarantees agreement with data in the thin EDL region. Results also indicate that the charge regulation boundary condition, complemented with an adequate bulk electrolyte model, provides better agreement with experimental trends than the specified zeta potential or specified surface net charge boundary conditions. Further, it is shown that currents due to advection (by electroosmotic flow) are in all cases studied less than 25% of the total current in the system.  相似文献   

15.
The structure of the electrical double layer (EDL) of a spherical macroion with a total charge of 60 elementary charges is studied by molecular dynamics methods. In calculations we used two models: continuous and discrete. In the continuous model, the total charge was concentrated in the center of the macroion; in the discrete model, elementary charges were randomly distributed over the surface of the macroion. The radial profiles of local densities and electric potential in EDL, as well as the degree of counterion binding by the macroion, are calculated with allowance for the Lennard-Jones and electrostatic interactions. It is established that the character of charge distribution significantly affects the EDL structure near the macroion, whereas its effect is much weaker at larger distances. The results obtained are compared with the experimental data on the surface potential and the diffuse part of EDL of sodium dodecyl sulfate micelles in aqueous solution, as well as on the micelle-bound charge. It is shown that even weak specific interaction between counterions and a macroion can substantially influence the structure of its EDL.  相似文献   

16.
Zhang Y  Timperman AT 《The Analyst》2003,128(6):537-542
A nanocapillary array was integrated into a microfluidic device and its ability to concentrate analytes was characterized. Through the application of an electric field across the channel, large molecules were concentrated in front of the nanocapillary array, and a concentrated analyte band was ejected from the channel by reversing the polarity of the electric field. The effects of nanocapillary diameter, analyte charge, analyte concentration, analyte plug length, and analyte relative mobility were investigated. Concentration factors up to 300-fold were measured for fluorescein. By concentrating anionic FITC-labeled peptides, it was demonstrated that the magnitude of the electrophoretic mobility did not have a measurable effect on the concentration factor. Therefore, multiple analytes can be concentrated in front of the same nanocapillary array without adjusting the conditions, provided the analytes have the same net charge. In the presence of an electric field, a charge trapping effect was observed; small anionic molecules can be concentrated in front of nanocapillary array with channel diameters which are orders of magnitude above the molecular weight cut-offs for hydrodynamically driven systems. The concentrating process was found to be very efficient for fluorescein, as no leakage through the nanocapillary array or sorption of fluorescein to the nanocapillary array was observed. Due to their flexibility and efficiency, it is anticipated that nanocapillary arrays will find increased utility in electrokinetically driven microfluidic systems.  相似文献   

17.
A charged spherical particle is concentrically positioned in a converging-diverging nanotube filled with an electrolyte solution, resulting in an electric double layer (EDL) forming around the particle's surface. In the presence of an axially applied electric field, the particle electrophoretically migrates along the axis of the nanotube due to the electrostatic and hydrodynamic forces acting on the particle. In contrast to a cylindrical nanotube with a constant cross-sectional area in which the electric field is almost uniform, the presence of a converging-diverging section in a nanotube alters the electric field, perturbs the charge distribution, and induces a pressure gradient and a recirculating flow that affect the electrostatic and hydrodynamic forces acting on both the particle and the fluid. Depending on the magnitude of the surface charge density along the nanotube's wall, the particle's electrophoretic motion may be significantly accelerated as the particle transverses the converging-diverging section. A continuum model consisting of the Nernst-Planck, Poisson, and Navier-Stokes equations for the ionic concentrations, electric potential, and flow field is implemented to compute the particle's velocity as a function of the particle's size, the nanotube's geometry, surface charges, electric field intensity, bulk electrolyte concentration, and the particle's location. When the particle is negatively charged and the wall of the nanotube is uncharged, the particle migrates in the direction opposite to that of the applied electric field and the presence of the converging-diverging section significantly accelerates the particle's motion. This, however, is not always true when the nanotube's wall is charged with the same sign as that of the particle. Once the ratio of the surface charge density of the nanotube's wall to that of the particle exceeds a certain value, the negatively charged particle will not translocate through the tube toward the anode and does not attain the maximum velocity at the throat of the converging-diverging section. One can envision such a device to be a nanofilter that allows molecules with surface charge densities much higher than that of the wall to go through the nanofilter, while preventing molecules with surface charge densities lower than that of the wall from passing through the nanofilter. The induced recirculating flow may be used to enhance mixing and to stretch, fold, and trap molecules in nanofluidic detectors and reactors.  相似文献   

18.
19.
In this article, an analytical model is devised for analyzing time periodic electroosmotic flows through nanochannels within the continuum regime, without presuming the validity of the Boltzmann distribution of ionic charges. The charge density distributions are obtained from the conservation considerations of the individual ionic species and other thermochemical constraints and are subsequently utilized to derive the potential distribution within the electrical double layer (EDL). This, coupled with the Navier-Stokes equation, yields a closed-form expression of the time-dependent velocity field that is valid under overlapped EDL conditions. This expression is first validated in asymptotic limits of thin EDLs, for which closed form expressions have been benchmarked in the literature. Further analyses are carried out to bring out the influences of the frequency of the electrical field on the electroosmotic flow features in the presence of overlapped EDLs.  相似文献   

20.
The chemistry and physics of charged interfaces is regulated by the structure of the electrical double layer (EDL). Herein we quantify the average thickness of the Stern layer at the silica (SiO2) nanoparticle/aqueous electrolyte interface as a function of NaCl concentration following direct measurement of the nanoparticles’ surface potential by X‐ray photoelectron spectroscopy (XPS). We find the Stern layer compresses (becomes thinner) as the electrolyte concentration is increased. This finding provides a simple and intuitive picture of the EDL that explains the concurrent increase in surface charge density, but decrease in surface and zeta potentials, as the electrolyte concentration is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号