共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a systematic theoretical study based on semi-empirical, Hartree-Fock (HF), and density functional theory (DFT) models of a series of polycyclic aromatic hydrocarbons (PAHs) that exhibit hollow sites. In this study we focus particularly on the magnetic criteria of aromaticity, namely (1)H NMR and nucleus-independent chemical shifts (NICS), and on their relationships with other electronic properties. The computed shifts and NICS indices indicate that an external magnetic field induces exceptionally strong ring currents in even-layered PAH doughnuts, in particular in the layer directly adjacent to the central hole of double-layered compounds. These exceptionally strong ring currents also correlate with particularly small HOMO-LUMO gaps and electronic excitation energies and to abnormally high polarizabilities, indicating in turn that these compounds have a more pronounced metallic character. Comparison is made with further depictions of aromaticity in these systems and in [18]-[66]annulene rings by employing topological, structural, and energetic criteria. 相似文献
2.
Xueliang Shi Weixiang Kueh Dr. Bin Zheng Prof. Kuo‐Wei Huang Prof. Chunyan Chi 《Angewandte Chemie (International ed. in English)》2015,54(48):14412-14416
Quinoidal thia‐acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2‐sulfur migration was observed during the Friedel–Crafts alkylation reaction. The analogues display a closed‐shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole–dipole and [C? H???π]/[C? H???S] interactions. 相似文献
3.
Dandan Chen Dr. Dariusz W. Szczepanik Prof. Dr. Jun Zhu Dr. Alvaro Muñoz-Castro Prof. Dr. Miquel Solà 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(2):802-808
The isolated-pentagon rule (IPR) is a determining structural feature that accounts for hollow fullerene stabilization and properties related to Cn (n≥60) cages. The recent characterization of an unprecedented non-IPR hydrofullerene, C2v C66H4, bearing two heptagons with adjacent fused-pentagon motifs, largely dismisses this feature. Herein, employing DFT calculations, the 13C NMR spectroscopy and aromatic behavior of C2v C66H4 are explored. The results show the presence of three π-aromatic circuits at the bottom boat section of C66H4, indicating the unique features of this hydrofullerene in comparison to those of pristine C60. In addition, under specific orientations of the external field, certain π-aromatic circuits are enabled, resulting in a more aromatic fullerene than that of C60, but lower than that of the spherical aromatic C606− fulleride. Notably, under a field aligned with the saturated carbon atoms, nonaromatic characteristics are exposed. This reveals that spherical-like cages can involve a complex magnetic response that heavily depends on the orientation of the applied field. 相似文献
4.
Renana Gershoni‐Poranne Prof. Amnon Stanger 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(19):5673-5688
Nucleus‐independent chemical shift (NICS)‐based methods are very popular for the determination of the induced magnetic field under an external magnetic field. These methods are used mostly (but not only) for the determination of the aromaticity and antiaromaticity of molecules and ions, both qualitatively and quantitatively. The ghost atom that serves as the NICS probe senses the induced magnetic field and reports it in the form of an NMR chemical shift. However, the source of the field cannot be determined by NICS. Thus, in a multi‐ring system that may contain more than one induced current circuit (and therefore more than one source of the induced magnetic field) the NICS value may represent the sum of many induced magnetic fields. This may lead to wrong assignments of the aromaticity (and antiaromaticity) of the systems under study. In this paper, we present a NICS‐based method for the determination of local and global ring currents in conjugated multi‐ring systems. The method involves placing the NICS probes along the X axis, and if needed, along the Y axis, at a constant height above the system under study. Following the change in the induced field along these axes allows the identification of global and local induced currents. The best NICS type to use for these scans is NICSπZZ, but it is shown that at a height of 1.7 Å above the molecular plane, NICSZZ provides the same qualitative picture. This method, namely the NICS‐XY‐scan, gives information equivalent to that obtained through current density analysis methods, and in some cases, provides even more details. 相似文献
5.
Milan Randić Marjana Novič Marjan Vračko Damir Vukičević Dejan Plavšić 《International journal of quantum chemistry》2012,112(4):972-985
We have outlined novel graph theoretical model for computing π‐electron currents in π‐electron polycyclic conjugated hydrocarbons. We start with Kekulé valence structures of a polycyclic conjugated hydrocarbon and their conjugated circuits. To each 4n+2 conjugated circuits we assign counter clockwise current i and to each 4n conjugated circuit we assign clockwise current i. By adding the contributions from all conjugated circuits in a single Kekulé valence structure one obtains π‐electron current pattern for the particular Kekulé valence structure. By adding the conjugated circuit currents in all Kekulé valence structure one obtains the pattern of π‐electron currents for considered molecule. We report here π‐electron current patters for coronene and 17 its isomers, which have been recently considered by Balaban et al., obtained by replacing one or more pairs of peripheral benzene rings with five and seven member rings. Our results are compared with their reported π‐electron current density patters computed by ab initio molecular orbital (MO) computations and satisfactory parallelism is found between two so disparate approaches. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献
6.
7.
Fias S Fowler PW Delgado JL Hahn U Bultinck P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(10):3093-3099
Using multicentre delocalization indices, the ring current maps of a large set of polycyclic aromatic hydrocarbons (PAH) are reconstructed and compared with ab initio computations of the same maps in the pseudo-pi version of the ipsocentric approach to magnetic response. The quality of the comparison indicates that both delocalization and ring current approaches capture the same information about the aromatic nature of the PAH. Aromaticity as a global property, requires knowledge of more than single circuits, but the present results suggest no need to introduce a "multidimensional character" for aromaticity. 相似文献
8.
Yujie Xia Tao Li Chao Yuan Cameron Fletcher Xinyue Dai Xingfan Zhang Lishu Zhang Prof. Dr. Yanyan Jiang Dr. Hui Li 《Chemphyschem》2020,21(6):568-574
The electron transport properties of polycyclic aromatic hydrocarbons (PAHs) with different numbers of benzene rings tethered to narrow zigzag graphene nanoribbon (ZGNR) electrodes have been investigated. Results show that the transport properties of PAHs are dependent on whether the number of benzene rings in the width direction is odd or even. This effect is strong for narrow width PAHs, but its strength decreases as the width of the PAH is increased. PAHs with an odd number of rings exhibit poor transport properties, whereas the ones having an even number of rings show excellent transport properties coupled with a negative differential resistance (NDR) effect. Moreover, the linkage points and the structure of the molecules have a noticeable effect on the transport properties of the PAH, making the odd-even effect weaker or disappear entirely. Although the PAH with three benzene rings displays poor transport capabilities, it shows excellent rectification behavior compared to the other examined molecules. These studies present a feasible avenue for designing molecular devices with enhanced performance by the careful manipulation of the PAH molecular structure. 相似文献
9.
Dandan Chen Dr. Dariusz W. Szczepanik Prof. Jun Zhu Prof. Miquel Solà 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(57):12964-12971
Species with adaptive aromaticity are aromatic in the ground and lowest-lying triplet excited states and they have normally intermediate singlet-triplet gaps. Few examples of compounds with adaptive aromaticity are known to date, including 16-valence-electron (16e) metallapentalenes. A sweeping search could be conducted to discover new members of this group, but efficient designs with an explicit strategy would facilitate the quest for new members of this elusive family. Density functional theory calculations and aromaticity evaluations have been performed to reveal the nature of triplet-state aromaticity in 16e metallapentalenes. Our results show that coordination of strong σ- or π-donor ligands helps achieving adaptive aromaticity of 16e metallapentalenes by means of a spin delocalization mechanism. These results have important implications for understanding the unusual properties of the organometallic adaptive aromatics, leading the way to efficient design of new compounds with tunable singlet-triplet gaps. 相似文献
10.
The mechanism of the bond-forming reaction between C(7)H(6) (2+) and C(2)H(2) to yield C(9) entities has been investigated by density functional theory calculations with close comparison with experimental data. It is shown that the reaction produces the C(9)H(6) (2+) and C(9)H(7) (2+) di-cations with geometries most probably derived from the indene skeleton. In comparison, the formation of linear structures of di-cations is much more energy-demanding and therefore appears improbable. 相似文献
11.
12.
De Proft F Fowler PW Havenith RW Schleyer Pv Van Lier G Geerlings P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(4):940-950
Current-density maps were calculated by the ipsocentric CTOCD-DZ/6-311G** (CTOCD-DZ=continuous transformation of origin of current density-diamagnetic zero) approach for three sets of inorganic monocycles: S(4) (2+), Se(4) (2+), S(2)N(2), P(5) (-) and As(5) (-) with 6 pi electrons; S(3)N(3) (-), S(4)N(3) (+) and S(4)N(4) (2+) with 10 pi electrons; and S(5)N(5) (+) with 14 pi electrons. Ipsocentric orbital analysis was used to partition the currents into contributions from small groups of active electrons and to interpret the contributions in terms of symmetry- and energy-based selection rules. All nine systems were found to support diatropic pi currents, reinforced by sigma circulations in P(5) (-), As(5) (-), S(3)N(3) (-), S(4)N(3) (+), S(4)N(4) (2+) and S(5)N(5) (+), but opposed by them in S(4) (2+), Se(4) (2+) and S(2)N(2). The opposition of pi and sigma effects in the four-membered rings is compatible with height profiles of calculated NICS (nucleus-independent chemical shifts). 相似文献
13.
Jiatian Chen Le Yang Ying Li Qinghua Hou Lanlan Li Peng Jin 《International journal of quantum chemistry》2019,119(16):e25961
Inorganic planar ring-shape molecules with 4n + 2 π electrons are always the focus of experimental synthesis and theoretical research due to their potential aromaticity and stability. In this work, the whole series of five-membered heterocycle monoanions X nY5-n− (X, Y = group 15 elements; n = 1-4) were thoroughly investigated by means of density functional theory calculations. They all have large formation energies and HOMO-LUMO gap energies, suggesting the potential thermodynamic and kinetic stability. Their aromaticities are comparable to that of typical aromatic hydrocarbons. Their thermal stabilities were firmly established by the ab initio molecular dynamics simulations. As most of them are predicted for the first time, their various spectra were simulated for experimental characterization. Furthermore, we demonstrate that these five-membered cyclic anions can be employed as η5-ligand to construct novel all-inorganic metallocenes, which may serve as the building blocks of low-dimensional nanomaterials. 相似文献
14.
Poater J Fradera X Duran M Solà M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2003,9(5):1113-1122
In this work we quantify the local aromaticity of six-membered rings in a series of planar and bowl-shaped polycyclic aromatic hydrocarbons (PAHs) and fullerenes. The evaluation of local aromaticity has been carried out through the use of structurally (HOMA) and magnetically (NICS) based measures, as well as by the use of a new electronically based indicator of aromaticity, the para delocalization index (PDI), which is defined as the average of all the Bader delocalization indices between para-related carbon atoms in six-membered rings. The series of PAHs selected includes C(10)H(8), C(12)H(8), C(14)H(8), C(20)H(10), C(26)H(12), and C(30)H(12), with benzene and C(60) taken as references. The change in the local aromaticity of the six-membered rings on going from benzene to C(60) is analyzed. Finally, we also compare the aromaticity of C(60) with that of C(70), open [5,6]- and closed [6,6]-C(60)NH systems, and C(60)F(18). 相似文献
15.
Herrero-García N Fernández I Osío Barcina J 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(26):7327-7335
A joint computational–experimental study has been carried out to analyze the homoconjugative interactions in 7,7‐diarylnorbornane (DPN) derivatives. The experimentally observed new bands in their UV/Vis have been accurately assigned by means of TD‐DFT calculations. Both experimental data and computations show that aromatic homoconjugation in acyclic systems is an effective mechanism for electron delocalization that resembles the situation described for polyphenylenes and polyenes. The effective homoconjugation length in homoconjugated oligomers is in the range of 6–7 aryl rings. The effect of substituents directly attached to the para carbon atom of the DPN moiety have been also studied. We found that the HOMO→LUMO vertical transitions can indeed be modified by the nature of the aromatic substituents in order to provoke dramatic changes in the electronic properties (i.e., in the absorption spectra) of the studied species. 相似文献
16.
Yago García‐Rodeja Prof. Dr. Miquel Solà Dr. Israel Fernández 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(30):10572-10580
The Diels–Alder reactivity of maleic anhydride towards the bay regions of planar polycyclic aromatic hydrocarbons was explored computationally in the DFT framework. The process becomes more and more exothermic and the associated activation barriers become lower and lower when the size of the system increases. This enhanced reactivity follows an exponential behavior that reaches its maximum for systems having 18–20 benzenoid rings in their structures. This peculiar behavior was analyzed in detail by using the activation strain model of reactivity in combination with energy decomposition analysis. The influence of the change in the aromaticity of the polycyclic compound during the process on the respective activation barriers was also studied. 相似文献
17.
18.
Dr. Christina Tönshoff Prof. Dr. Holger F. Bettinger 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(10):3193-3212
Acenes, consisting of linearly fused benzene rings, are an important fundamental class of organic compounds with various applications. Hexacene is the largest acene that was synthesized and isolated in the 20th century. The next largest member of the acene family, heptacene, was observed in 2007 and since then significant progress in preparing acenes has been reported. Significantly larger acenes, up to undecacene, could be studied by means of low-temperature matrix isolation spectroscopy with in situ photolytic generation, and up to dodecacene by means of on-surface synthesis employing innovative precursors and highly defined crystalline metal surfaces under ultrahigh vacuum conditions. The review summarizes recent experimental and theoretical advances in the area of acenes that give a significantly deeper insight into the fundamental properties and nature of the electronic structure of this fascinating class of organic compounds. 相似文献
19.
Dr. Karlee P. Castro Dr. Eric V. Bukovsky Dr. Igor V. Kuvychko Nicholas J. DeWeerd Dr. Yu-Sheng Chen Dr. Shihu H. M. Deng Dr. Xue-Bin Wang Dr. Alexey A. Popov Prof. Steven H. Strauss Dr. Olga V. Boltalina 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(59):13547-13565
A solution, solid-state, and computational study is reported of polycyclic aromatic hydrocarbon PAH/PAH(CF3)n donor/acceptor (D/A) charge-transfer complexes that involve six PAH(CF3)n acceptors with known gas-phase electron affinities that range from 2.11(2) to 2.805(15) eV and four PAH donors, including seven CT co-crystal X-ray structures that exhibit hexagonal arrays of mixed π-stacks with 1/1, 1/2, or 2/1 D/A stoichiometries (PAH=anthracene, azulene, coronene, perylene, pyrene, triphenylene; n=5, 6). These are the first D/A CT complexes with PAH(CF3)n acceptors to be studied in detail. The nine D/A combinations were chosen to allow several structural and electronic comparisons to be made, providing new insights about controlling D/A interactions and the structures of CT co-crystals. The comparisons include, among others, CT complexes of the same PAH(CF3)n acceptor with four PAH donors and CT complexes of the same donor with four PAH(CF3)n acceptors. All nine CT complexes exhibit charge-transfer bands in solution with λmax between 467 and 600 nm. A plot of E(λmax) versus [IE(donor)−EA(acceptor)] for the nine CT complexes studied is linear with a slope of 0.72±0.03 eV eV−1. This plot is the first of its kind for CT complexes with structurally related donors and acceptors for which precise experimental gas-phase IEs and EAs are known. It demonstrates that conclusions based on the common assumption that the slope of a CT E(λmax) versus [IE−EA] plot is unity may be incorrect in at least some cases and should be reconsidered. 相似文献
20.
Dr. Yago García-Rodeja Prof. Dr. Israel Fernández 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(41):9771-9779
The influence of the replacement of C=C bonds by isoelectronic B−N moieties on the reactivity of π-curved polycyclic aromatic hydrocarbons has been computationally explored by means of density functional theory calculations. To this end, we selected the Diels–Alder cycloaddition reactions of the parent corannulene and its BN-doped counterparts with either cyclopentadiene or maleic anhydride. In addition, the analogous reactions involving larger buckybowls, such as BN-hemifullerene, BN-circumtrindene, and BN-fullerene, have been also considered. It has been found that whereas corannulene behaves as a dienophile, its BN counterpart better acts as a diene. In contrast, the larger BN-curved systems cannot be used as dienes in Diels–Alder reactions, but undergo facile (i.e., low barrier) cycloaddition reactions with cyclopentadiene. The observed trends in reactivity, which cannot be directly explained by using typical frontier molecular orbital arguments, are quantitatively described in detail by means of state-of-the-art computational methods, namely the activation strain model of reactivity combined with the energy decomposition analysis method. The results of our calculations highlight the crucial role of the curvature of the system on the reactivity and its influence on the strength of the orbital interactions between the deformed reactants during their transformations. 相似文献