首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous glutathione (GSH) and glutathione disulfide (GSSG) status is highly sensitive to oxidative conditions and have broad application as a surrogate indicator of redox status in vivo. Established methods for GSH and GSSG quantification in whole blood display limited utility in human plasma, where GSH and GSSG levels are ~3–4 orders of magnitude below those observed in whole blood. This study presents simplified sample processing and analytical LC–MS/MS approaches exhibiting the sensitivity and accuracy required to measure GSH and GSSG concentrations in human plasma samples, which after 5-fold dilution to suppress matrix interferences range from 200 to 500 nm (GSH) and 5–30 nm (GSSG). The utility of the methods reported herein is demonstrated by assay performance and validation parameters which indicate good sensitivity [lower limits of quantitation of 4.99 nm (GSH) and 3.65 nm (GSSG), and high assay precision (intra-assay CVs 3.6 and 1.9%, and inter-assay CVs of 7.0 and 2.8% for GSH and GSSG, respectively). These methods also exhibited exceptional recovery of analyte-spiked plasma samples (98.0 ± 7.64% for GSH and 98.5 ± 12.7% for GSSG). Good sample stability at −80°C was evident for GSH for up to 55 weeks and GSSG for up to 46 weeks, with average CVs <15 and <10%, respectively.  相似文献   

2.
Glutathione (GSH), glutathione disulfide (GSSG) and 2‐hydroxyethylated glutathione (HESG) are important biomarkers for exploring the genotoxicity mechanism of ethylene oxide (EO) or ethylene in vivo. A liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of GSH, GSSG and HESG in mouse lung tissues after inhalation exposure to EO. The lower limit of quantitation for all these biomarkers was 0.002 µg/mL. The linearity of the calibration curves for all analytes was >0.998. The intra‐day assay precision relative standard deviation (RSD) values for quality control samples for all analytes were ≤12.8% with accuracy values ranging from 87.2 to 113%. The inter‐day assay precision (RSD) values for all analytes were ≤13.1% with accuracy values ranging from 86.9 to 103%. This method was applied to concurrently determine the levels of GSH, GSSG and HESG in lung samples isolated from mouse after 4‐week inhalation exposure to EO at 0, 10, 50, 100 and 200 ppm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The influences of reactant concentrations, solvent type, acid strength, pH conditions and ionic strength on the determination of apparent gas‐phase equilibrium constants K using electrospray ionisation mass spectrometry (ESI‐MS) were elucidated. As example serves the interaction of the tripeptide glutathione (GSH) with phenylarsine oxide (PAO). It was shown that rising initial concentrations of both reactants were not adequately compensated by increasing signal intensities of the reaction products in the mass spectra. The equilibrium constant for the formation of the phenylarsenic‐substituted peptide species decreased from 1.42 × 105 ± 1.81 × 104 l µmol?1 to 1.54 × 104 ± 1.5 × 103 l µmol?1 with rising initial GSH concentrations from 1 to 10 µM at fixed PAO molarity of 50 µM . K values resulting from a series with a fixed GSH molarity of 5 µM and a PAO molarity varied from 10 to 100 µM remained in a narrower range between 4.59 × 104 ± 2.15 × 104 l µmol?1 and 1.07 × 104 ± 4.0 × 103 l µmol?1. In contrast, consumption numbers calculated from the ion intensity ratios of reaction products to the unreacted peptide were not influenced by the initial reactant concentrations. In a water–acetonitrile–acetic acid mixture (48:50:2, v:v), the consumption of 5 µ M GSH increased from 8.3 ± 1.4% to 39.6 ± 1.6% with increased molar excess of PAO from 2 to 20, respectively. The GSH consumption was considerably enhanced in a changed solvent system consisting of 25% acetonitrile and 75% 10 mM ammonium formate, pH 5.0 (v:v) up to 80% of the original peptide amount at an only threefold molar arsenic excess. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A new approach for direct determination of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and methylthioadenosine (MTA) in urine was developed based on MEKC by using SDS modified with isobutanol in the presence of PEG-300. Analytes were first extracted with grafted phenylborononic acid. Using a 50 µm internal diameter silica capillary of 32 cm total length filled with 0.05 M SDS, 0.05 M H3PO4, 5% (v/v) isobutanol, and 10% (v/v) PEG-300, LOQ of 0.15 µM for SAM and SAH, and 0.2 µM for MTA was reached. Accuracy was 92% for MTA, 109% for SAH, and 105% for SAM, intra- and interday imprecision were <2.5 and ≤3%, respectively. The total time of analysis for one sample was 10 min. Analysis of 30 urine samples from healthy volunteers showed that the median SAM and SAH levels were 12.1 and 0.73 µM, respectively. MTA levels, which were determined in urine for the first time (according to our data), were 0.43 µM, and these values correlated well with the SAM level (r = 0.748, p < 0.01).  相似文献   

5.
We describe a very rapid high-performance capillary electrophoresis method for the separation and quantification of reduced (GSH) and oxidized (GSSG) glutathione in red blood cells. Two procedures for sample preparation have been compared, Microcon-10 membrane filtration and acid precipitation. The separation is obtained in an uncoated capillary using a high ionic strength borate buffer at pH 7.8. The intra-assay coefficients of variation (CVs%) are 1.53 and 1.66 for GSH and GSSG, respectively. The run is shorter than 90 s and the migration time is highly reproducible both for GSH (CV% 0.22) and GSSG (CV% 0.17). When the filtration step is used only GSH is found, whereas both GSH and GSSG are detectable after acid precipitation, suggesting that GSSG revealed after acid treatment may be an artefact due to GSH oxidation. Because of its good analytical performance this method could be used for routine red blood cell glutathione measurement in healthy or pathological conditions.  相似文献   

6.
A microtiter plate assay for quantitation of reduced (GSH) and oxidized (GSSG) glutathione in the rat liver tissue and bile is described. The assay is based on the established enzymatic recycling method and a new thiol-masking reagent, 1-methyl-4-vinyl-pyridinium trifluoromethane sulfonate (M4VP). Samples were first processed by homogenization with (liver) or addition of (bile) sulfosalicylic acid. The total glutathione and GSSG were then determined before and after rapid (≤2 min) and efficient (100%) masking of the GSH content of the samples with M4VP followed by the enzymatic recycling assay. The percentages of error and coefficient of variation of the assay were within the accepted guidelines, indicating the accuracy and precision of the assay in the range of 6.25–100 pmol GSH per microplate well and 2.17–140 pmol GSSG per well, with lower limit of quantitation of 6.25 and 2.17 pmol per well for GSH and GSSG, respectively. Furthermore, the recoveries of added GSH or GSSG from the liver and bile samples were accurate and precise. The assay was applied to measurement of GSH, GSSG, and GSH:GSSG ratio in the liver and serially collected bile samples in sham-operated and ischemic rat livers, demonstrating a depletion of glutathione and a decrease in the GSH:GSSG ratio as a result of ischemia. The developed assay is rapid, sensitive, accurate, and precise and is suitable for studies of the redox status of liver under physiologic and pathophysiologic conditions.  相似文献   

7.
Glutathione (GSH) and glutathione disulfide (GSSG) levels in cells constitute a thiol redox system. They can be used as an indicator of oxidative stress of the cell. In this study, a capillary zone electrophoresis (CZE) method is described that enables quantitation of GSH and GSSG from cellular extracts. The CZE buffer used was 20 mM ammonium acetate containing 5% (v/v) acetic acid at pH 3.1 in conjunction with a polybrene coated capillary operated in reverse polarity mode. Effects of different acids used to prepare cell samples were investigated on CZE performance. The acids include meta phosphoric acid (MPA), trichloroacetic acid (TCA), phosphoric acid (PA) and sulfosalicylic acid (SSA) and are used to stabilize GSH and GSSG before performing CZE analysis. The method features a limit of detection of 4 microM and a limit of quantitation of 12 microM for both GSSG and GSH and recoveries of 94% for GSH and 100% for GSSG. Quantitative analysis of GSSG and GSH in HaCaT cell extracts (5% SSA, w/v) was performed with this method and changes in the ratio of GSH to GSSG in N-ethylmaleimide treated cell sample was observed by comparing with control cell samples.  相似文献   

8.
The alterations of organic acids citrate, α-ketoglutarate, succinate, fumarate, malate production together with isocitrate lyase activity as a glyoxalate shunt enzyme, and antibiotic production of Streptomyces sp M4018 were investigated in relation to changes in the glucose, glycerol and starch concentrations (5–20 g/L) after identification as a strain of Streptomyces hiroshimensis based on phenotypic and genotypic characteristics. The highest intracellular citrate and α-ketoglutarate levels in 20 g/l of glucose, glycerol, and starch mediums were 399.47 ± 4.78, 426.93 ± 6.40, 355.84 ± 5.38 ppm and 444.81 ± 5.12, 192.96 ± 2.26, 115.20 ± 2.87 ppm, respectively. The highest succinate, malate, and fumarate levels were also determined in 20 g/l of glucose medium as 548.9 ± 11.21, 596.15 ± 8.26, and 406.42 ± 6.59 ppm and the levels were significantly higher than the levels in glycerol and starch. Extracellular organic acid levels measured also showed significant correlation with carbon source concentrations by showing negative correlation with pH levels of the growth medium. The antibiotic production of Streptomyces sp. M4018 was also higher in glucose medium as was the case also for organic acids when compared with glycerol. On the other hand, there is no production in starch.  相似文献   

9.
A series of novel triazole analogs (10a-k) bearing piperidine were synthesized in an aprotic solvent on the most effective pharmacophore with acetylcholinesterase (AChE) and α-glucosidase inhibitory activity. Triazole analogs (10a-k) were obtained in excellent yields (75–90 %) and characterized by EI-MS, IR, 13C NMR and 1H NMR. The newly synthesized triazole analogs (10a-k) showed potent AChE inhibitory activity in the range of Ki = 0.0155 ± 1.25 µM to 0.557 ± 0.50 µM, IC50 = 0.031 ± 0.85 to 0.537 ± 0.76 µM than Eserine (0.04 ± 0.001 µM) having strong electron-withdrawing fluorine group on the pyridine ring was recorded as a most potent inhibitor of AChE while (%) inhibition against α-glucosidase was ranging between 52.36 ± 1.67 to 85.35 ± 1.39. The kinetic study predicted that triazole analogs (10a-k) followed the un-competitive and mixed type of inhibition against AChE. In silico molecular docking was performed at the active site of the AChE co-crystal structure (PDB ID:1NEN). The results of molecular docking corelate will with the experimental findings.  相似文献   

10.
Transient isotachophoresis (tITP) can improve the sensitivity of capillary electrophoresis (CE). In general, it was carried out under the condition of suppressed electroosmotic flow (EOF). However, some special conditions, such as extreme low pH background electrolyte and coating were needed to achieve the requirements of suppressed EOF. In this work, an approach of tITP under the strong counter-EOF in open system (counter-EOF-tITP) is presented for the rapid and sensitive preconcentrating the reduced glutathione (GSH) and the oxidized glutathione (GSSG) without modifying the capillary and the commercial CE instrument. The parameters of the experimental system, such as the concentration of leading electrolyte, the injected amount of terminating electrolyte and the injected pressure of sample were investigated in detail to understand the mechanism of counter-EOF-tITP. The sensitivity enhancement factors were of 320 for GSH and 280 for GSSG. In addition, the detection limit of 23.4 and 18.0 μg L−1 for GSH and GSSG was achieved, respectively. The method's applicability was demonstrated by determining GSH and GSSG in tomato and human serum.  相似文献   

11.
Background: There is a growing interest in the correlation between antioxidants and periodontal disease. In this study, we aimed to investigate the effect of oxidative stress and the impact of two antioxidants, curcumin and rutin, respectively, in the etiopathology of experimentally induced periodontitis in diabetic rats. Methods: Fifty Wistar albino rats were randomly divided into five groups and were induced with diabetes mellitus and periodontitis: (1) (CONTROL)—control group, (2) (DPP)—experimentally induced diabetes mellitus and periodontitis, (3) (DPC)—experimentally induced diabetes mellitus and periodontitis treated with curcumin (C), (4) (DPR)—experimentally induced diabetes mellitus and periodontitis treated with rutin (R) and (5) (DPCR)—experimentally induced diabetes mellitus and periodontitis treated with C and R. We evaluated malondialdehyde (MDA) as a biomarker of oxidative stress and reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG and catalase (CAT) as biomarkers of the antioxidant capacity in blood harvested from the animals we tested. The MDA levels and CAT activities were also evaluated in the gingival tissue. Results: The control group effect was statistically significantly different from any other groups, regardless of whether or not the treatment was applied. There was also a significant difference between the untreated group and the three treatment groups for variables MDA, GSH, GSSG, GSH/GSSG and CAT. There was no significant difference in the mean effect for the MDA, GSH, GSSG, GSH/GSSG and CAT variables in the treated groups of rats with curcumin, rutin and the combination of curcumin and rutin. Conclusions: The oral administration of curcumin and rutin, single or combined, could reduce the oxidative stress and enhance the antioxidant status in hyperglycemic periodontitis rats.  相似文献   

12.
Araujo AR  Saraiva ML  Lima JL 《Talanta》2008,74(5):1511-1519
This work reports the development of a simple, robust, automated sequential injection analysis (SIA) system for the enzymatic determination of total (tGSH) and oxidized (GSSG) glutathione in human whole blood. The reduced (GSH) glutathione concentration is then obtained as the difference between the tGSH and GSSG concentrations. The determination was based on the DTNB–GSSG reductase recycling assay, which couples the specificity of the GSSG reductase (GR) with an amplification of the response to glutathione, followed by spectrophotometric detection of the 2-nitro-5-thiobenzoic acid (TNB) formed (λ = 412 nm). The implementation of this reaction in a SIA flow system with an in-line dilution strategy permitted the necessary distinct application ranges for tGSH and for GSSG. It also guaranteed the exact timing of fluidic manipulations and precise control of the reaction conditions.

The influence of parameters such as reagents concentration, temperature, pH, flow rate of the carrier buffer solution, as well as reaction coil length, etc., on the sensitivity and performance of the SIA system were studied and the optimum reaction conditions subsequently selected. Linear calibration plots were obtained for GSH and GSSG concentrations up to 3.00 and 1.50 μM, with detection limits of 0.031 and 0.014 μM, respectively. The developed methodology showed good precision, with a relative standard deviation (R.S.D.) < 5.0% (n = 10) for determination of both glutathione forms. Statistical evaluation showed good compliance, for a 95% confidence level, between the results obtained with the SIA system and those furnished by the comparison batch procedure.  相似文献   


13.
Sulodexide (SDX), a purified glycosaminoglycan mixture used to treat vascular diseases, has been reported to exert endothelial protective effects against ischemic injury. However, the mechanisms underlying these effects remain to be fully elucidated. The emerging evidence indicated that a relatively high intracellular concentration of reduced glutathione (GSH) and a maintenance of the redox environment participate in the endothelial cell survival during ischemia. Therefore, the aim of the present study was to examine the hypothesis that SDX alleviates oxygen–glucose deprivation (OGD)-induced human umbilical endothelial cells’ (HUVECs) injury, which serves as the in vitro model of ischemia, by affecting the redox state of the GSH: glutathione disulfide (GSSG) pool. The cellular GSH, GSSG and total glutathione (tGSH) concentrations were measured by colorimetric method and the redox potential (ΔEh) of the GSSG/2GSH couple was calculated, using the Nernst equation. Furthermore, the levels of the glutamate–cysteine ligase catalytic subunit (GCLc) and the glutathione synthetase (GSS) proteins, a key enzyme for de novo GSH synthesis, were determined using enzyme-linked immunoassay (ELISA). We demonstrated that the SDX treatment in OGD conditions significantly elevated the intracellular GSH, enhanced the GSH:GSSG ratio, shifting the redox potential to a more pro-reducing status. Furthermore, SDX increased the levels of both GCLc and GSS. The results show that SDX protects the human endothelial cells against ischemic stress by affecting the GSH levels and cellular redox state. These changes suggest that the reduction in the ischemia-induced vascular endothelial cell injury through repressing apoptosis and oxidative stress associated with SDX treatment may be due to an increase in GSH synthesis and modulation of the GSH redox system.  相似文献   

14.
Glutathione (GSH) occurs widely in animal and human's tissues, and protects cells by changing into reversible oxidized glutathione (GSSG) when cells meet with oxidants, such as hydrogen peroxide (H2O2) and lipid peroxide. They are of great importance in a variety of diseases, which possess an oxidative etiology. The conversion of GSH to GSSG is widely recognized as a reliable index of oxidative stress1. There are some reports about determination of GSH and GSSG by high performance liq…  相似文献   

15.
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode (FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition (pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma.  相似文献   

16.
In order to investigate a possible relationship between the intensity of lipid peroxidation (LP) in tumor cells and their proliferative activity various methods to quantify LP are desirable. In this study the decrease in the contents of fatty acids and glutathione was measured by established methods inEhrlich ascites tumor (EAT) cellsin vitro, in which LP was stimulated by the addition of ferrous iron, either as free ion or as histidinate chelate.When EAT cells were incubated for 30 min at 37 °C in the presence of 5 mM FeSO4 the following changes were observed in comparison to appropriate control cells: The content of reduced glutathione (GSH) and total glutathione (GSH+2 GSSG) decreased significantly by 24 and 30% respectively. The decrease of 4 unsaturated (C 18:1; C 18:2; C 20:4; C 22:6) and 2 saturated fatty acids (C 16:0; C 18:0) by about 15% on the average was statistically significant only for C 16:0 and C 20:4).More pronounced effects were observed with 5 mM Fe(II)-histidinate. GSH and GSH+2 GSSG decreased by 54% and 40%, resp. The decrease of fatty acids by about 40% on the average was significant for all of the 6 fatty acids tested. These results are in agreement with previous studies on LP in EAT cells showing Fe(II)-histidinate to be a more powerful promoter of LP compared with free ferrous ion. The observation, that the content not only of GSH but also of total glutathione was decreased in iron-treated tumor cells is in contradiction to the hypothesis that GSH may act as a mere redox mediator of LP under the conditions used and points to a consumption of GSH by several possible pathways. The finding of decreased levels of unsaturated as well as saturated fatty acids in the presence of Fe(II)-histidinate underlines the extraordinary potency of iron as an initiator and catalyst of LP.This work was supported by the Association for International Cancer Research, St. Andrews, U.K.  相似文献   

17.
Hybrid analogs containing molecules are always the choice of different synthetic researcher due to their diverse biological applications and significantly more efficient. Heterocyclic being a good inhibitors against varied disease are most commonly used in drug designing and development. The current study also addressed the synthesis of pyrimidine-based thiazolidinone derivatives (113) using stepwise processes and their structure was confirmed using various characterization techniques such as 1HNMR, 13CNMR, and HREI-MS. Furthermore, the biological significances of the synthesized scaffolds were also explored and proved to be as anti-urease and anti-cancer moieties. Their inhibitory potentials were determined using the minimum inhibitory concentration (MIC) in the presence of their standard drugs, Thiourea (IC50 = 8.20 ± 0.20 µM) and Tetrandrineb (IC50 = 12.30 ± 0.10 µM) respectively. Structure activity relationship (SAR) was established for all the synthesized scaffolds and compared their inhibitory potentials in which scaffolds 3 (IC50 = 2.30 ± 0.30 and 3.20 ± 0.50 µM), 6 (IC50 = 3.10 ± 0.20 and 6.20 ± 0.10 µM), 7 (IC50 = 3.20 ± 0.20 and 3.80 ± 0.30 µM) and 10 (IC50 = 4.20 ± 0.20 and 5.10 ± 0.30 µM) exhibited the most influential activity. These compounds were subsequently examined using molecular docking experiments, which evaluate the binding interaction of ligands with enzyme active sites.  相似文献   

18.
Determination of the broad-spectrum antibiotics amoxicilline (AMX) and ceftazidime (CTZ) in blood serum and microdialysates of the subcutaneous tissue of the lower limbs is performed using CE with contactless conductivity detection (C4D). Baseline separation of AMX is achieved in 0.5 M acetic acid as the background electrolyte and separation of CTZ in 3.2 M acetic acid with addition of 13% v/v methanol. The CE-C4D determination is performed in a 25 µm capillary with suppression of the EOF using INST-coating on an effective length of 18 cm and the attained migration time is 4.2 min for AMX and 4.4 min for CTZ. The analysis was performed using 20 µl of serum and 15 µl of microdialysate, treated by the addition of acetonitrile in a ratio of 1/3 v/v and the sample is injected into the capillary using the large volume sample stacking technique. The LOQ attained in the microdialysate is 148 ng/ml for AMX and 339 ng/ml for CTZ, and in serum 143 ng/ml for AMX and 318 ng/ml for CTZ. The CE-C4D method is employed for monitoring the passage of AMX and CTZ from the blood circulatory system into the subcutaneous tissue at the sites of diabetic ulceration in patients suffering from diabetic foot syndrome and also for measuring the pharmacokinetics following intravenous application of bolus antibiotic doses.  相似文献   

19.
The paper presents the development of an advanced extraction and fast analytical LC MS/MS method for simultaneous analyses of reduced and oxidized glutathione (GSH and GSSG, respectively) in different animal tissues. The simultaneous determination of GSH and GSSG is crucial because the amount and ratio of both GSH and GSSG may be altered in response to oxidative stress, an important mechanism of toxicity. The method uses the derivatization of free thiol groups in GSH. Its performance was demonstrated for less explored tissues (lung, brain, and liver) in mouse. The combined extraction and analytical method has very low variability and good reproducibility, maximum coefficients of variance for within-run and between-run analyses under 8 %, and low limits of quantification; for GSH and GSSG, these were 0.2 nM (0.06 ng/mL) and 10 nM (6 ng/mL), respectively. The performance of the method was further demonstrated in a model experiment addressing changes in GSH and GSSG concentrations in lung of mice exposed to CdO nanoparticles during acute 72 h and chronic 13-week exposures. Inhalation exposure led to increased GSH concentrations in lung. GSSG levels were in general not affected; nonsignificant suppression occurred only after the longer 13-week period of exposure. The developed method for the sensitive detection of both GSH and GSSG in very low tissue mass enables these parameters to be studied in cases where only a little sample is available, i.e. in small organisms or in small amounts of tissue.  相似文献   

20.
The present work was aimed to the development of a fluorescence assay using the universal 96-well microplate format, for the measurement of reduced glutathione (GSH) in yeast cells. The method relies upon the reaction between GSH and a highly selective fluorogenic probe, i.e. naphthalene-2,3-dicarboxaldehyde (NDA). The optimization of the method included the extraction step of GSH from cultured yeast cells in a cold perchloric acid solution, derivatization conditions (10-min reaction at pH 8.6 and at 20 ± 2 °C in darkness) and stability studies of the resulting fluorescent adduct. Full selectivity was observed versus other endogenous thiols (except for γ-glutamylcysteine), glutathione disulfide (GSSG) and enzymatic reducing reagents of GSSG. Linearity was verified in the range 0.3-6.5 μM (R2 > 0.98) and limits of quantification and detection were 0.3 and 0.05 μM, respectively. Relative standard deviation corresponding to repeatability (n = 3) and inter-day precision (n = 5) were 2.8 and 6.1%, respectively. Mean GSH recovery from cell extracts was 95%. The method appeared highly correlated (R2 = 0.96) with a previously reported HPLC method.The method was then applied to the monitoring of GSH in the yeast strain Kluyveromyces lactis during its growth period and in the presence of an inhibitor of GSH biosynthesis. The method presents the main advantage of a high throughput for the measurement of biological samples. The extent of the method to the study of the redox couple GSSG/GSH by including an enzymatic reduction step and the enhancement of the fluorescence signal using cyclodextrins were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号