首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cationic, anionic and non-ionic surfactants adsorb readily from aqueous solution on to Amberlite XAD 4. The ionic surfactants cause the pH of the solution in contact with the resin to differ from that in the bulk of solution, cationic surfactants increasing the interfacial pH and anionic surfactants decreasing it. This causes a shift in the pH transition interval of a co-adsorbed pH indicator when measured with respect to the bulk solution. The quantity of ionic surfactant adsorbed tends to a constant value (presumably monolayer coverage) with increasing solution concentration, this amount being a function of the individual surfactant, whereas non-ionic surfactants readily form multilayers. Significant adsorption occurs when the surfactant possesses at least 14 carbon atoms.  相似文献   

2.
Berthod A  Saliba O 《Talanta》1992,39(4):371-382
Acid-base properties of ordered media were investigated via potentiometry, polarography and electrochemical probes. Electrochemical probes have a pH-dependent reduction potential and their oxidized and reduced forms have a different affinity for aqueous and organic phases. Solutions of anionic, cationic and nonionic surfactants were investigated. One anionic and one cationic surfactant stabilized emulsion were studied. A water-dodecane-pentanol-anionic surfactant microemulsion and a water-heptane-butanol-cationic surfactant were also investigated for several compositions. In micellar solutions and emulsions, it was possible to standardize and use the classical glass electrode for pH values in the range 1-12. The hydrogen electrode was required in the microemulsion systems. The reduction of electrochemical probes was studied by polarography. It is shown that in the ordered media studied, the aqueous phase played the most important role in micellar solutions and in O/W emulsions, as far as acid-base properties were concerned. In microemulsions, the acid-base properties of the aqueous phase were very different to those of water. The alizarin probe could be reduced at a "local" pH of about 12 when the aqueous phase pH was only 6.  相似文献   

3.
Drug delivery vectors based on amphiphiles have important features such as versatile physicochemical properties and stimuli-responsiveness. Amino acid-based surfactants are especially promising amphiphiles due to their enhanced biocompatibility compared to conventional surfactants. They can self-organize into micelles, vesicles and complex hierarchical structures, such as fibers, twisted and coiled ribbons, and tubules. In this work, we investigated the self-assembly and drug loading properties of a family of novel anionic double-tailed lysine-derived surfactants, with variable degree of tail length mismatch, designated as mLys10 and 10Lysn, where m and n are the number of carbon atoms in the tails. These surfactants form tubular aggregates with assorted morphologies in water that undergo gelation due to dense entanglement, as evidenced by light and electron microscopy. Lysozyme (LZM), an enzyme with antimicrobial properties, was selected as model protein for loading. After the characterization of the interfacial properties and phase behavior of the amphiphiles, the LZM-loading ability of the tubules was investigated, under varying experimental conditions, to assess the efficiency of the aggregates as pH- and temperature-sensitive nanocarriers. Further, the toxicological profile of the surfactants per se and surfactant/LZM hydrogels was obtained, using human skin fibroblasts (BJ-5ta cell line). Overall, the results show that the tubule-based hydrogels exhibit very interesting properties for the transport and controlled release of molecules of therapeutic interest.  相似文献   

4.
Various experimental methods were used to investigate interaction between polymer and anionic/nonionic surfactants and mechanisms of enhanced oil recovery by anionic/nonionic surfactants in the present paper. The complex surfactant molecules are adsorbed in the mixed micelles or aggregates formed by the hydrophobic association of hydrophobic groups of polymers, making the surfactant molecules at oil-water interface reduce and the value of interfacial tension between oil and water increase. A dense spatial network structure is formed by the interaction between the mixed aggregates and hydrophobic groups of the polymer molecular chains, making the hydrodynamic volume of the aggregates and the viscosity of the polymer solution increase. Because of the formation of the mixed adsorption layer at oil and water interface by synergistic effect, ultra-low interfacial tension (~2.0?×?10?3 mN/m) can be achieved between the novel surfactant system and the oil samples in this paper. Because of hydrophobic interaction, wettability alteration of oil-wet surface was induced by the adsorption of the surfactant system on the solid surface. Moreover, the studied surfactant system had a certain degree of spontaneous emulsification ability (D50?=?25.04?µm) and was well emulsified with crude oil after the mechanical oscillation (D50?=?4.27?µm).  相似文献   

5.
Amino acid-derived surfactants have increasingly become a viable biofriendly alternative to petrochemically based amphiphiles as speciality surfactants. Herein, the Krafft temperatures and critical micelle concentrations (cmc) of three series of novel amino acid-derived surfactants have been determined by differential scanning microcalorimetry and surface tension measurements, respectively. The compounds comprise cationic molecules based on serine and tyrosine headgroups and anionic ones based on 4-hydroxyproline headgroups, with varying chain lengths. A linear dependence of the logarithm of cmc on chain length is found for all series, and in comparison to conventional ionic surfactants of equal chain length, the new amphiphiles present lower cmc and lower surface tension at the cmc. These observations highlight their enhanced interfacial performance. For the 18-carbon serine-derived surfactant the effects of counterion change and of the presence of a cis-double bond in the alkyl chain have also been investigated. The overall results are discussed in terms of headgroup and alkyl chain effects on micellization, in the light of available data for conventional surfactants and other types of amino acid-based amphiphiles reported in the literature.  相似文献   

6.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

7.
A new kind of fluorescence probe, a fluorophore-labeled anionic surfactant, sodium 12-(N-dansyl)amino-dodecanate (12-DAN-ADA), was designed and synthesized. The applications of 12-DAN-ADA as a fluorescence probe in molecular assemblies, especially in the transitions between micelles and vesicles, were investigated systematically. It was found that 12-DAN-ADA can efficiently differentiate the two different aggregate types (shapes) in mixed cationic and anionic surfactant systems and double-chain cationic surfactant systems. Experimental results showed that the fluorescence anisotropy of 12-DAN-ADA increased sharply, the emission maxima became blue-shifted, and the fluorescence lifetime rose notably when the aggregates transformed from micelles to vesicles in mixed cationic and anionic surfactant systems. The fluorescence anisotropy can also distinguish different aggregate types in single-component double-chain cationic surfactant systems. Further studies demonstrated that 12-DAN-ADA is a more useful probe of transitions between micelles and vesicles than commonly used fluorescence probes, such as pyrene and 1,6-diphenyl-1,3,5-hexatriene (DPH).  相似文献   

8.
The synthesis of lamellar mesostructured Mg(OH)2 was achieved through a surfactant templating route. Amphiphilic compounds with different anionic headgroups (phosphate, sulfate, sulfonate, and carboxylate) were used as surfactants. Control of d spacing was achieved through the use of different alkyl carboxylate amphiphiles. It is proposed that the interaction between the highly reactive oxygen atoms of the anionic surfactants and the highly electrophilic Mg atom leads to the formation of high charge density at the interface between the surfactant molecules and the inorganic precursor. This interaction is very strong and the existence of strong bonds between the headgroup molecules of the surfactant and the Mg atom locks the structure in a preferred orientation, i.e., lamellar mesostructure. The strong interaction thus precludes any phase transformation, and only the lamellar phase of Mg(OH)2 is obtained. Calcination of the surfactant by heating in oxygen flow leads to the collapse of the lamellar mesophase and results in the formation of nonporous MgO.  相似文献   

9.
Fouling of nanofiltration membranes is studied during filtration of aqueous surfactant solutions under different conditions. To this purpose, four typical nanofiltration membranes (Desal51HL, NF270, NTR7450 and NFPES10) and three typical surfactants (nonionic neodol, anionic SDBS and cationic cetrimide) are selected. Fouling is studied as a function of the surfactant concentration, with and without addition of an electrolyte (NaCl), at different pH and when filtering a mixture of surfactants. Adsorption experiments and hydrophobicity measurements (to study the orientation of the surfactants on the membrane surface) are also performed under the different conditions. The least membrane fouling is found for the anionic surfactant SDBS, while for the cationic surfactant cetrimide very low relative fluxes are observed. Neodol shows an intermediate degree of fouling. Both hydrophobic and electrostatic interactions (in the case of ionic surfactants) between the membrane surface and the surfactant explain the degree of adsorption and hence fouling, as membrane fouling is correlated with the amount of adsorbed surfactant. The difference between cetrimide and SDBS becomes especially visible when changing the pH: increasing the pH leads not only to an opposite orientation of the adsorbed surfactants, but also to an opposite trend in adsorbed amount and membrane fouling. This study permits selection of an optimal nanofiltration membrane to recycle wastewater containing surfactants in the carwash industry. The optimal choice would be a hydrophilic membrane with a low molecular weight cut-off and a small negative surface charge at neutral pH. Cationic surfactants in the wastewater should also be avoided as much as possible.  相似文献   

10.
The binding of organic contaminants to dissolved humic acids reduces the free concentration of the contaminants in the environment and also may cause changes to the solution properties of humic acids. Surfactants are a special class of contaminants that are introduced into the environment either through wastewater or by site-specific contamination. The amphiphilic nature of both surfactants and humic acids can easily lead to their mutual attraction and consequently affect the solution behavior of the humics. Binding of an anionic surfactant (sodium dodecyl sulfate, SDS) and two cationic surfactants (dodecyl- and cetylpyridinium chloride, DPC and CPC) to purified Aldrich humic acid (PAHA) is studied at pH values of 5, 7, and 10 in solutions with a 0.025 M ionic strength (I). Monomer concentrations of the surfactants are measured with a surfactant-selective electrode. At I = 0.025 M, no significant binding is observed between the anionic surfactant (SDS) and PAHA, whereas the two cationic surfactants (DPC, CPC) bind strongly to PAHA over the pH range investigated. The binding is due both to electrostatic and hydrophobic attraction. The initial affinity increases with increasing pH (i.e., negative charge of PAHA) and tail length of the surfactant. Binding reaches a pseudo-plateau value (2-5 mmol/g) when the charge associated with PAHA is neutralized by that of the bound surfactant molecules. The pseudo-plateau values for DPC and CPC are very similar and depend on the solution pH. The cationic surfactant-PAHA complexes precipitate when the charge neutralization point is reached. This occurs at approximately 10% of the critical micelle concentration or CMC. This type of phase separation commonly occurs during surfactant binding to oppositely charged polyelectrolytes. For CPC, the precipitation is complete, but in the case of DPC, a noticeable fraction of PAHA remains in solution. At very low CPC concentrations (less than 0.1% of the CMC), CPC binding to PAHA is cooperative. The investigated range of concentrations for DPC was too limited to reach a similar conclusion. The results of this study demonstrate that the fate of humic acids will be strongly affected by the presence of low cationic surfactant concentrations in aqueous environmental systems.  相似文献   

11.
Experimental results on the dynamic dilational surface elasticity of protein solutions are analyzed and compared. Short reviews of the protein behavior at the liquid–gas interface and the dilational surface rheology precede the main sections of this work. The kinetic dependencies of the surface elasticity differ strongly for the solutions of globular and non-globular proteins. In the latter case these dependencies are similar to those for solutions of non-ionic amphiphilic polymers and have local maxima corresponding to the formation of the distal region of the surface layer (type I). In the former case the dynamic surface elasticity is much higher (> 60 mN/m) and the kinetic dependencies are monotonical and similar to the data for aqueous dispersions of solid nanoparticles (type II). The addition of strong denaturants to solutions of bovine serum albumin and β-lactoglobulin results in an abrupt transition from the type II to type I dependencies if the denaturant concentration exceeds a certain critical value. These results give a strong argument in favor of the preservation of the protein globular structure in the course of adsorption without any denaturants. The addition of cationic surfactants also can lead to the non-monotonical kinetic dependencies of the dynamic surface elasticity indicating destruction of the protein tertiary and secondary structures. The addition of anionic surfactants gives similar results only for the protein solutions of high ionic strength. The influence of cationic surfactants on the local maxima of the kinetic dependencies of the dynamic surface elasticity for solutions of a non-globular protein (β-casein) differs from the influence of anionic surfactants due to the heterogeneity of the charge distribution along the protein chain. In this case one can use small admixtures of ionic surfactants as probes of the adsorption mechanism. The effect of polyelectrolytes on the kinetic dependencies of the dynamic surface elasticity of protein solutions is weaker than the effect of conventional surfactants but exceeds the error limits.  相似文献   

12.
Recently, cyclodextrins (CDs) were found to play important yet complicated (or even apparently opposite sometimes) roles in self-assembly systems of amphiphiles or surfactants. Herein, we try to review and clarify the versatility of CDs in surfactant assembly systems by 1) classifying the roles played by CDs into two groups (modulator and building unit) and four subgroups (destructive and constructive modulators, amphiphilic and unamphiphilic building units), 2) comparing these subgroups, and 3) analyzing mechanisms. As a modulator, although CDs by themselves do not participate into the final surfactant aggregates, they can greatly affect the aggregates in two ways. In most cases CDs will destroy the aggregates by depleting surfactant molecules from the aggregates (destructive), or in certain cases CDs can promote the aggregates to grow by selectively removing the less-aggregatable surfactant molecules from the aggregates (constructive). As an amphiphilic building unit, CDs can be chemically (by chemical bonds) or physically (by host–guest interaction) attached to a hydrophobic moiety, and the resultant compounds act as classic amphiphiles. As an unamphiphilic building unit, CD/surfactant complexes or even CDs on their own can assemble into aggregates in an unconventional, unamphiphilic manner driven by CD–CD H-bonds. Moreover, special emphasis is put on two recently appeared aspects: the constructive modulator and unamphiphilic building unit.  相似文献   

13.
A novel fluorescence method for the determination of the critical micelle concentration (cmc) is reported. The cmc values of nonionic and anionic surfactants were evaluated utilizing a photosensitive monoazacryptand-Ba2+ complex, whose fluorescence intensity is sensitively changed by environmental conditions based on the photoinduced electron transfer (PET) mechanism as a fluorescent probe (PET method). Based on a comparison of the cmc values obtained by the PET method versus those obtained by conventional fluorescence-based methods as well as the values reported in the literature, one can conclude that the PET method is useful for the cmc determination. In particular, the PET method was more effective for the cmc determination of nonionic surfactants with very low cmc values (< 10(-5) M) than any other fluorescence-based method. In the cases of anionic surfactants, the PET method revealed the formation of the premicellar aggregates comprised of surfactant molecules and fluorescent probes below the cmc. Moreover, the hydrophobicity around the monoazacryptand-Ba2+ complex incorporated into various nonionic surfactant micelles was evaluated by this PET method.  相似文献   

14.
We find that the gas phases of air bubbles covered with anionic or cationic polystyrene latex particles dissolve on exposure to cationic and catanionic surfactants. The particles on the bubble interface are released as singlets or aggregates when the surfactant has a single hydrophobic chain, while porous colloidal capsules (colloidosomes) with the same aqueous phase inside as out are obtained when the surfactant has two hydrophobic chains. The formation of colloidosomes from the particle-covered bubbles does not appear to depend significantly on the charge of the particles, which makes it unlikely that bilayers of surfactant are stabilizing the colloidosome. While the exact mechanism of formation remains an open question, our method is a simple one-step process for obtaining colloidosomes from particle-covered bubbles.  相似文献   

15.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

16.
Aggregation behavior of three N-acyl peptide surfactants, sodium N-(4-n-dodecyloxybenzoyl)-L-alyl-L-valinate (SDBAV), L-valyl-L-alaninate (SDBVA), and L-valyl-L-valinate (SDBVV), were investigated. The amphiphiles have very low critical aggregation concentration (cac). Fluorescence anisotropy studies using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a fluorescent probe indicated formation of bilayer aggregates in dilute solution. Transmission electron micrographs showed the existence of large vesicles in dilute solution. Circular dichroism spectra suggested formation of helical aggregates. The vesicle formation was found to be more favored at neutral pH. Dynamic light scattering was used to measure hydrodynamic radius of the vesicles. The microviscosity of the vesicles formed by the amphiphiles was determined by use of fluorescence anisotropy and the lifetime of the DPH probe. The vesicles formed by the surfactants are stable at temperatures above body temperature and for a long period of time. Fluorescence probe studies, however, indicated transformation of vesicles to rod-like micelles at surfactant concentrations much higher than the cac value. Addition of sodium chloride also transformed the vesicles to rod-like micelles.  相似文献   

17.
Self-organization in aqueous systems based on ionic surfactants, and their mixtures, can be broadly understood by a balance between the packing properties of the surfactants and double-layer electrostatic interactions. While the equilibrium properties of micellar systems have been extensively studied and are understood, those of bilayer systems are less well characterized. Double-chained and pseudodouble-chained (or catanionic) surfactants are among the amphiphiles which typically form bilayer structures, such as lamellar liquid–crystalline phases and vesicles. In the past 10–15 years, an experimental effort has been made to get deeper insight into their aggregation patterns. With the double-chained amphiphiles, by changing counterion, adding salt or adding anionic surfactant, there are possibilities to depart from the bilayer aggregate in a controlled manner. This is demonstrated by several studies on the didodecyldimethylammonium bromide surfactant. Mixtures of cationic and anionic surfactants yield the catanionics, surfactants of the swelling type, and also show a rich phase behavior per se. A variety of liquid–crystalline phases and, in dilute regimes, equilibrium vesicles and different micellar shapes are often encountered. Phase diagrams and detailed structural studies, based on several techniques (NMR, microscopy and scattering methods), have been reported, as well as theoretical studies. The main features and conclusions emerging from such investigations are presented.  相似文献   

18.
We investigate the competition between the associations of oppositely charged protein-surfactant complexes and oppositely charged surfactant complexes. In all systems examined, the most favorable complexation is the one between the two oppositely charged surfactant ions, despite the strong binding known, for example, dodecyl sulfate, DS-, to lysozyme. Thus, the phase behavior of the catanionic system is dominating the features observed also in the presence of protein. The phase behavior of the dilute protein-free dodecyltrimethylammonium chloride-sodium dodecyl sulfate-water system is presented and used as a basis for the discussion on the different solubilization mechanisms. Our results show that the mechanism for resolubilization of a protein-surfactant salt is fundamentally different when it is caused by addition of a second surfactant than when it is accomplished by an excess of the first surfactant. The competition between lysozyme and cationic amphiphiles as hosts for the anionic surfactants was studied experimentally and analyzed quantitatively. Aggregates with C12 cationic surfactants are clearly preferred by the anionic surfactants, while for C10 and particularly C8 a clear excess of cationic surfactant has to be added to completely dissolve the complex salt lysozyme-anionic surfactant.  相似文献   

19.
The stability and interactions in thin wetting films between the silica surface and air bubble containing (a) straight chain C10 amine and (b) cationic/anionic surfactant mixture of a straight chain C10 amine with sodium C8, C10 and (straight chain) C12 sulfonates, were studied using the microscopic thin wetting film method developed by Platikanov [D. Platikanov, J. Phys. Chem. 68 (1964) 3619]. Film lifetimes, three-phase contact (TPC) expansion rate, receding contact angles and surface tension were measured. The presence of the mixed cationic/anionic surfactants was found to lessen contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants heterocoagulation could arise through the formation of positively charged interfacial complexes. Mixed solution of cationic and anionic surfactants shows synergistic lowering in surface tension. The formation of the interfacial complex at the air/solution interface was confirmed by surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants system controls the strength of the interfacial complex. The observed phenomena were discussed in terms of the electrostatic heterocoagulation theory, where the interactions can be attractive or repulsive depending on the different surface activity and charge of the respective surfactants at the two interfaces.  相似文献   

20.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号