首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione (GSH), a common tripeptide, plays an essential role in a variety of cellular functions. GSH level is reported to be closely related to human health. In this study, we fabricate an ultrasensitive electrochemical biosensor for GSH quantification. DNA probes are firstly modified on the electrode surface and thymine-Hg2+-thymine is formed. Since GSH is able to chelate Hg2+ from the DNA mismatched sites effectively, which leads to DNA structural switching from hairpin to linear strand, rolling circle amplification (RCA) could be initiated with the released linear primer probe. The RCA product with multiple repeating sequences further captures numerous DNA modified silver nanoparticles (AgNPs) by the hybridization of complementary sequences. Stripping voltammetric responses of AgNPs are then detected to reveal GSH concentration. The linear detection range is from 0.1 pM to 10 nM and the limit of detection is 0.1 pM, which is lower than most current analytical methods. This method is also highly selective and functions well against a series of interferents. Additionally, the proposed method has been successfully utilized in human serum samples, which shows fairly good potential in clinical applications.  相似文献   

2.
In the present study, a highly sensitive and specific bio-sensing platform for enzyme-free and colorimetric detection of nucleic acids has been developed. The biosensor is composed of two DNA nanostructures and two fuel strands that construct the foundation of a feed-forward catalytic DNA circuit. Upon binding the target strand to a specific DNA nanostructure, the circuit is run in order that at the end a hemin-binding aptamer, with the ability to convert a colorless substrate into a colored substance is released. Based on this strategy, 4 pM of the target DNA can be easily detected in serum samples by naked eyes after only a two-hour incubation with the circuit; meanwhile, if the incubation time is extended to 3 h, the biosensor can detect 1 pM of the target DNA. Besides the elevated sensitivity, the circuit can truly discriminate a spurious target containing one nucleotide mismatch with high specificity. Overall, the enzyme-free catalytic DNA circuit can be used as a sensitive alternative method to enzyme-based biosensors for the specific and cost-effective detection of nucleic acids.  相似文献   

3.
A laboratory-made surface plasmon resonance (SPR) instrument based on the detection of resonance excitation wavelength has been successfully fabricated. The performance and workability of the SPR instrument was demonstrated as a DNA biosensor. Biotinylated single-stranded oligonucleotides (ssDNA) were chemically immobilized on a gold-film surface of the SPR instrument as a DNA probe for the detection of its fully complementary, half-complementary and non-complementary ssDNA. The immobilization of the ssDNA probe was done by avidin-biotin linkage. The ssDNA used were 12-mer oligonucleotides. The sensing mechanism was based on the shift in resonance wavelength of an excitation light beam as the target ssDNA hybridized with the ssDNA on the gold-film surface. The linear dynamic ranges of the DNA biosensor for fully complementary and half-complementary ssDNA are 0.04-1.2 pM and 0.08-1.1 pM, respectively. The DNA biosensor showed higher sensitivity to fully complementary ssDNA than to half-complementary ssDNA. But no shift of resonance wavelength to the non-complementary ssDNA was observed.  相似文献   

4.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

5.
A highly reproducible and sensitive signal-on electrogenerated chemiluminescence (ECL) biosensor based on the DNAzyme for the determination of lead ion was developed. The ECL biosensor was fabricated by covalently coupling 5′-amino-DNAzyme-tagged with ruthenium bis (2,2′-bipyridine) (2,2′-bipyridine-4,4′-dicarboxylic acid)-ethylenediamine (Ru1-17E′) onto the surface of graphite electrode modified with 4-aminobenzoic acid, and then a DNA substrate with a ribonucleotide adenosine hybridized with Ru1-17E′ on the electrode. Upon binding of Pb2+ to the Ru1-17E′ to form a complex which catalyzed the cleavage of the DNA substrate, the double-stranded DNA was dissociated and thus led to a high ECL signal. The signal linearly increases with the concentration of Pb2+ in the range from 5.0 to 80 pM with a detection limit of 1.4 pM and a relative standard derivation of 2.3%. This work demonstrates that using DNAzyme tagged with ruthenium complex as an ECL probe and covalently coupling method for the fabrication of the ECL biosensor with high sensitivity, good stability and significant regeneration ability is promising approach.  相似文献   

6.
朱化雨  张利  陈怀成  闫圣娟 《分析化学》2012,40(10):1549-1554
利用巯基乙胺将合成的金纳米粒子氨基化;基于纳米粒子负载羧基化的联吡啶钌和巯基DNA制得电化学发光信号探针;采用酶循环信号放大技术,获得大量含新增DNA的溶液来捕获信号探针;以金电极为载体,将巯基DNA自组装到电极表面,依次杂交互补DNA和信号探针,构建电化学发光生物传感器.在优化的条件下,此传感器对凝血酶具有良好的响应,在3.0× 10-13~6.0×10-11 mol/L范围内,凝血酶的浓度与发光强度呈良好的线性关系,检出限为1.8× 10-13 mol/L(3a).采用酶切循环放大技术制备的生物传感器具有灵敏度高,选择性和重现性良好等特点.  相似文献   

7.
In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (Rct) and signifying “signal-on” behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4 pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.  相似文献   

8.
A novel DNA biosensor has been fabricated for the detection of DNA hybridization based on layer‐by‐layer (LBL) covalent assembly of gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWCNTs). The stepwise LBL assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated doxorubicin, and the factors influencing the performance of the DNA hybridization was investigated in detail. The signal was linearly changed with target DNA concentration increased from 0.5 to 0.01 nM, and had a detection limit of 7.5 pM (signal/noise ratio of 3). In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

9.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

10.
Lin L  Liu Y  Tang L  Li J 《The Analyst》2011,136(22):4732-4737
Sensitive and selective detection of DNA is in urgent need due to its important role in human bodies. Many disorders, such as Alzheimer's disease and various cancers, are closely related with DNA damage. In this work, a novel electrochemical DNA biosensor was constructed on a DNA-assembling graphene platform which provided a robust, simple and biocompatible platform with large surface area for DNA immobilization. The as-designed DNA sensor was fabricated by directly assembling captured ssDNA on a graphene-modified electrode through the π-π stacking interaction between graphene and ssDNA bases. Then, the target DNA sequence and oligonucleotide probes-labeled AuNPs were able to hybridize in a sandwich assay format, following the AuNPs-catalyzed silver deposition. The deposited silver was further detected by differential pulse voltammetry. Owing to the high DNA loading ability of graphene and the distinct signal amplification by AuNPs-catalyzed silver staining, the resulting biosensor exhibited a good analytical performance with a wide detection linear range from 200 pM to 500 nM, and a low detection limit of 72 pM. Additionally, the biosensor was proved to be able to discriminate the complementary sequence from the single-base mismatch sequence. The simple biosensor is promising in developing electronic, on-chip assays in clinical diagnosis, environmental control, and drug discovery.  相似文献   

11.
Herein, we described a ratiometric strategy based on "chameleon" DNA-silver nanoclusters( DNA-AgNCs) fluorescent binary probes. The strategy was applied to detect high-risk human papillomavirus( HPV) DNA sequences, HPV-16. First, DNA-AgNCs were synthesized by a simple reduction method. The obtained nanoprobes showed typical yellow and red fluorescence of AgNCs. Upon the addition of HPV-16 DNA, the yellow fluorescence of AgNCs was reduced greatly, whereas tlie red fluorescence of AgNCs was increased. The concentration of HPV-16 DNA in the samples was characterized by the ratio of fluorescence intensity at 570 and 630 nm. Tlie ratiometric nanoprobes showed good selectivity for HPV-16 DNA, and the detection limit was 2 ninol/L. In addition, the practical applicability of this strategy was demonstrated by analysing the HPV-16 DNA in hiunan serum, illustrating its potential promise for clinical diagnosis.  相似文献   

12.
Hui Wang  Yuan Yin  Liu Gang 《Electroanalysis》2019,31(6):1174-1181
Lead is a highly toxic metal, which can persist in the natural environment and enrich in biological bodies. It can cause many severe diseases in the human body even at extremely low concentration. Here, we developed a new biosensor using single‐walled carbon nanotubes (SWNTs) modified with a specific Pbzyme (Pbzyme/SWNTs/FET) to detect lead ion (Pb2+), which can monitor the lead pollution. This biosensor used 3‐aminopropyltriethoxysilane to immobilize SWNTs on the area between the source and the drain of single‐gap microelectrode (FET), and the duplex DNA (Pbzyme) consisted of DNAzyme (GR‐5) and complementary DNA (CS‐DNA) was functionalized with the SWNTs’ surface through a peptide bond. The use of GR‐5 DANzyme and Pb2+ to form a stable complex structure to cleave the CS‐DNA can change radically the Pbzyme's structure on the SWNTs’ surface, which will further affect the number of carriers in SNWTs and the conductivity of the Pbzyme/SWNTs/FET. The change in conductivity can be used to evaluate the Pb2+ concentration. Under the optimal conditions, the relative resistances presented a positive correlation with the Pb2+ concentrations, showing a good linear relationship in the range of 10 pM to 50 nM, where the linear regression equation was y=10.104log [CPb]+5.8656, and the detection limit was 7.4 pM. Finally, the biosensor was applied to measure the Pb2+ contents in the soil collected from the forest grass green belt and paint, and the results were compared with the results of atomic fluorescence spectrometry.  相似文献   

13.
《Analytical letters》2012,45(17):3159-3169
Abstract

The nanocomposites of gold nanoparticles and multi‐walled carbon nanotubes (MWCNTs) have been applied in the enhanced electrochemical detection of DNA hybridization. Gold nanoparticles coated on MWCNTs uniformly were synthesized by simply one step reaction. Target DNA was detected by the peak current difference of differential pulse voltammetry (DPV) signals of the electroactive indicator methylene blue (MB) before and after hybridization on the Au/MWCNTs modified glass carbon electrode (GCE). Due to the excellent electrical conductivity of the novel matrix, the biosensor revealed high sensitivity with the detection level down to 1.0 pM. Excellently selectivity and reproducibility were also discussed.  相似文献   

14.
The development of a surface plasmon resonance (SPR) affinity biosensor based on DNA hybridisation is described. This biosensor has been applied to genetically modified organisms (GMOs) detection. Single stranded DNA (ssDNA) probes were immobilised on the sensor chip of an SPR device and the hybridisation between the immobilised probe and the complementary sequence (target) was monitored. The probe sequences were internal to the sequence of 35S promoter and NOS terminator which are inserted sequences in the genome of GMO regulating the transgene expression. The system has been optimised using synthetic oligonucleotides, then applied to real samples analysis. Samples, containing the transgenic target sequences, were amplified by polymerase chain reaction (PCR) and then detected with the SPR biosensor.  相似文献   

15.
Thomson DA  Dimitrov K  Cooper MA 《The Analyst》2011,136(8):1599-1607
Amplification-free detection of nucleic acids in complex biological samples is an important technology for clinical diagnostics, especially in the case where the detection is quantitative and highly sensitive. Here we present the detection of a synthetic DNA sequence from Herpes Simplex Virus-1 within swine cerebrospinal fluid (CSF), using a sandwich-like, magnetic nanoparticle pull-down assay. Magnetic nanoparticles and fluorescent polystyrene nanoparticles were both modified with DNA probes, able to hybridise either end of the target DNA, forming the sandwich-like complex which can be captured magnetically and detected by fluorescence. The concentration of the target DNA was determined by counting individual and aggregated fluorescent nanoparticles on a planar glass surface within a fluidic chamber. DNA probe coupling for both nanoparticles was optimized. Polystyrene reporter nanoparticles that had been modified with amine terminated DNA probes were also treated with amine terminated polyethylene glycol, in order to reduce non-specific aggregation and target independent adhesion to the magnetic particles. This way, a limit of detection for the target DNA of 0.8 pM and 1 pM could be achieved for hybridisation buffer and CSF respectively, corresponding to 0.072 and 0.090 femtomoles of target DNA, in a volume of 0.090 mL.  相似文献   

16.
Jing-Lin He 《Talanta》2010,80(3):1264-9236
To our knowledge, we report the first fluorescence aptasensor for detecting human neutrophil elastase (HNE) in homogeneous solution. The biosensor contains a short DNA scrambled sequence strand (SS) complementary to part of the aptamer sequence or the loop of molecular beacon (MB). The aptamer-HNE recognition event involves competition between the molecular beacon and loose HNE aptamer for the binding the short DNA strand. The new biosensor can detect as little as 0.34 nM of HNE, and the response is linear in the tested concentration range of 0.34-68 nM with the detection limit of 47 pM.  相似文献   

17.
In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing DNA on Au nanoparticles and a self-assembled monolayer of cysteamine modified Au electrode. The assembly processes of cysteamine, Au nanoparticles and DNA were characterized by cyclic voltammetry (CV). The Au nanoparticles enhanced DNA immobilization resulting in an increased guanine signal. The interaction of the analyte with the immobilized DNA was measured through the variation of the electrochemical signal of guanine by square wave voltammetry (SWV). The biosensor was able to detect the known genotoxic compounds: 2-anthramine, acridine orange and 2- naphthylamine with detection limits of 2, 3 and 50 nmol/L, respectively. The biosensor was also used to test actual water samples to evaluate the contamination level. Additionally, the comparison of results from the classical genotoxiciw bioassay has confirmed the applicability of the method for real samoles.  相似文献   

18.
A novel microfluidic chip‐based fluorescent DNA biosensor, which utilized the electrophoretic driving mode and magnetic beads‐based “sandwich” hybridization strategy, was developed for the sensitive and ultra‐specific detection of single‐base mismatch DNA in this study. In comparison with previous biosensors, the proposed DNA biosensor has much more robust resistibility to the complex matrix of real saliva and serum samples, shorter analysis time, and much higher discrimination ability for the detection of single‐base mismatch. These features, as well as its easiness of fabrication, operation convenience, stability, better reusability, and low cost, make it a promising alternative to the SNPs genotyping/detection in clinical diagnosis. By using the biosensor, we have successfully determined oral cancer‐related DNA in saliva and serum samples without sample labeling and any preseparation or dilution with a detection limit of 5.6 × 10?11 M, a RSD (n = 5) < 5% and a discrimination factor of 3.58–4.54 for one‐base mismatch.  相似文献   

19.
A quartz crystal microbalance DNA biosensor based on plasma prepared polythiophene /titanium dioxide (PT/TiO2) nanocomposite was developed for the detection of genetically modified organisms (GMOs). DNA hybridization was studied by quartz crystal microbalance (QCM) and cyclic voltammetry (CV) measurements. Single stranded DNA probes were immobilized on the PT/TiO2 coated quartz crystal electrode and the hybridization between the immobilized probe and the target complementary sequence in solution was monitored. The developed QCM-DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of genetically modified organisms.  相似文献   

20.
An acetylcholinesterase biosensor based on glassy carbon electrode modified with carbon black and pillar[5]arene was used for the determination of malathion after its preliminary oxidation. The contributions of enzyme immobilization and oxidation conditions to the improvement of analytical characteristics of the biosensor were considered and quantified. In optimal conditions, the acetylcholinesterase biosensor allows the determination of 40 pM of malathion with 10?min of incubation and 15 pM with 30?min of incubation. The sensitivity of immobilized enzyme was found to be higher than that the free enzyme due to sorbtional accumulation in the modifier layer. Incomplete oxidation of malathion decreased the sensitivity of the assay. The developed acetylcholinesterase biosensor was validated for the determination of malathion residues in grapes, wine, and peanuts. The recoveries calculated against a high-performance liquid chromatography assay were between 80 and 120% due to possible matrix effects and the simplified extraction protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号