首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single‐cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites. The hydrodynamic net force and the nDEP force acting on a 6 μm sphere were calculated in a 3D model. Polystyrene beads with difference diameters (6, 8, and 10 μm) and budding yeast cells were employed to verify multiple functions of the microfluidic device, including reliable capture and selective nDEP‐release of particles or cells and sensitive electrical impedance measurements of immobilized samples. The size of immobilized beads and the number of captured yeast cells can be discriminated by analyzing impedance signals at 1 MHz. Results also demonstrated that yeast cells can be immobilized at single‐cell resolution by combining the hydrodynamic capture with impedance measurements and nDEP‐release of unwanted samples. Therefore, the microfluidic device integrated with multiplexing microelectrodes potentially offers a versatile, reliable, and precise platform for single‐cell analysis.  相似文献   

2.
Tattoo colorants decompose under solar radiation and when exposed to laser light for their removal, leading to the accumulation in the dermis of toxic products. Aim of this study was to develop lipid microparticles (LMs) loaded with the colorant, Acid Red 87 (C.I. 45380) used in tattoo inks, and to investigate the effect of this system on the photostability of the colorant under simulated sunlight or laser irradiation. LMs loaded with C.I. 45380 were prepared by melt emulsification using tristearin and phosphatidylcholine as excipients. They were characterized by optical microscopy, laser diffraction, X-ray diffraction and release studies. Free C.I. 45380 and the colorant-loaded LMs were irradiated with a solar simulator or a Q-switched laser. Irradiation with a solar simulator demonstrated that photodecomposition of C.I. 45380 was markedly reduced by incorporation of the dye in the LMs, from 20.5 ± 4.6% to 1.3 ± 1.8%. Conversely, the laser-induced degradation of the colorant (30.1 ± 6.6%) was not significantly influenced by encapsulation in the LMs (the encapsulated C.I. 45380 loss was 27.4 ± 5.5%). Incorporation of C.I. 45380 in lipid microparticles enhances the photostability under sunlight of tattoo inks containing this colorant, without affecting its laser-induced degradation and hence laser removal efficiency.  相似文献   

3.
Circulating tumor cells are specifically referred as cells that detached from the primary tumor and are present in the bloodstream. They could be isolated from blood and used as representative biomarker for predicting cancer prognoses. Here, we developed a microfluidic chip with multiple curved channels, in which DNA fragments and antibody‐based enrichment are exploited to capture circulating tumor cells in blood sample. By introducing DNA fragments as long tentacles, the active antibody could be extended into the microchannel stereoscopically, which could greatly increase the chances of adhesion in a multidirectional way and improve the capture efficacy. Several pivotal factors for cell capturing were optimized to the best state. Compared to conventional chips for planar capturing, the capture efficiency of MCF‐7 cells was greatly increased from 37.17 to 85.10%. For the detection of MCF‐7‐containing artificial blood sample detection, the capture efficiency of tumor cells was about 74.19 ± 2.13%, which was obviously better than the result of flow cytometry (29.67 ± 4.02%). Captured cells were easily released from the surface of microfluidic chip with high cell viability, which could be investigated for the molecular analysis in the field of tumor diagnosis.  相似文献   

4.
A passive microfluidic device is reported for continuous microparticle enrichment. The microparticle is enriched based on the inertial effect in a microchannel with contracting‐expanding structures on one side where microparticles/cells are subjected to the inertial lift force and the momentum‐change‐induced inertial force induced by highly curved streamlines. Under the combined effect of the two forces, yeast cells and microparticles of different sizes were continuously focused in the present device over a range of Reynolds numbers from 16.7 to 125. ~68% of the particle‐free liquid was separated from the sample at Re = 66.7, and ~18 μL particle‐free liquid was fast obtained within 10 s. Results also showed that the geometry of the contracting‐expanding structure significantly influenced the lateral migration of the particle. Structures with a large angle induced strong inertial effect and weak disturbance effect of vortex on the particle, both of which enhanced the microparticle enrichment in microchannel. With simple structure, small footprint (18 × 0.35 mm), easy operation and cell‐friendly property, the present device has great potential in biomedical applications, such as the enrichment of cells and the fast extraction of plasma from blood for disease diagnose and therapy.  相似文献   

5.
We developed an insulator‐based dielectrophoretic (iDEP) creek‐gap device that enables the isomotive movement of cells and that is suitable for determining their DEP properties. In the iDEP creek‐gap device, a pair of planar insulators forming a single fan‐shaped channel allows the induction of the isomotive iDEP force on cells. Hence, the cells’ behavior is characterized by straight motion at constant velocity in the longitudinal direction of the channel. Operation of the device was demonstrated using human breast epithelial cells (MCF10A) by applying an AC voltage of Vpp = 34 V peak‐to‐peak and frequencies of 200 kHz and 50 MHz to the device. Subsequently, the magnitude of DEP forces and the real part of the ClausiusMossotti (CM) factor, Re(β), were deduced from the measured cell velocity. The values of Re(β) were 0.14 ± 0.01 for the frequency of 200 kHz and ?0.12 ± 0.01 for 50 MHz. These results demonstrated that the DEP properties of the cells could be extracted over a wide field frequency range. Therefore, the proposed iDEP creek‐gap device was found to be applicable to cell analysis.  相似文献   

6.
Oil-containing gelatin-gum Arabic microparticles were prepared by complex coacervation followed by crosslinking with glutaraldehyde or transglutaminase. A fluorescent mixture, khusimyl dansylate (KD) as the fluorescent compound mixed to the vetiver essential oil, was used as oil model. The effect of the type of crosslinking of the coacervated gelatin-gum Arabic membrane, the physical state of microparticles, wet or freeze-dried and the type of release media, aqueous with surfactants, Sodium Dodecyl Sulphate (sds) or Tween 80 (tw) and anhydrous ethanol as organic media on the release rate of the KD from the microparticles, was experimentally investigated.It was shown that the oil was dispersed uniformly throughout the microparticles and the chemical crosslinked microparticles were more resistant to swelling, presenting smaller sizes after hydration. Also the crosslinking effect, transglutaminase or glutaraldehyde, could be confirmed by the integrity of the crosslinked gelatin-gum Arabic microparticles after incubation in the aqueous sds media, compared to complete dissolution of the uncrosslinked microparticles in this media.The cumulative fluorescent KD release from the gelatin-gum Arabic microparticles decreased in the following order of dissolution media: anhydrous ethanol > tw > sds and the wet microparticles have shown a faster KD release than freeze-dried ones. A mathematical model was used to estimate the diffusion coefficient (D). The chemically crosslinked gelatin-gum Arabic microparticles ensured a pronounced retard effect in the KD diffusion, presenting a D varying from 0.02 to 0.6 × 10−11 cm2/s, mainly in an aqueous media, against D varying from 1.05 to 13.9 × 10−11 cm2/s from the enzymatic crosslinked microparticles.  相似文献   

7.
Schistosomiasis is one of the major public health problems worldwide. Even though this is a common illness among preschool children in poor countries, treatment is carried out mainly through the administration of praziquantel tablets, which has some disadvantages, such as the strong bitter taste. As an alternative to overcome this problem, the development of new encapsulated praziquantel formulations is demanded. For this reason, suspension polymerizations are carried out for the in situ encapsulation of praziquantel into polymer microparticles, using methyl methacrylate (MMA) and cationic compounds (diethylaminoethyl methacrylate, DEAEMA, and dimethylaminoethyl methacrylate, DMAEMA) as comonomers. This technique allows for the preparation of polymer microparticles with high encapsulation efficiencies (>90%) with characteristic sizes ranging from 0.5 to 1500 µm. Drug release profiles show that praziquantel is released from poly(methyl methacrylate) microparticles slowly due to the existence of strong diffusional resistance. On the other hand, the addition of cationic comonomers renders polymer particles sensitive to pH variations, allowing for faster release of praziquantel in acidic environments, as found in the stomach.  相似文献   

8.
The radioactivity concentration of 236Pu, 232U and 228Th in aqueous samples has been determined by means of alpha spectroscopy after chemical separation and pre-concentration of the radionuclides by cation exchange and liquid–liquid extraction using the Chelex-100 resin and 30% TBP/dodecan, respectively. Method calibration using a 236Pu standard solution containing the daughter radionuclides results in a detector efficiency of 18% and in a chemical recovery for cation-exchange which is (30 ± 7)%, (90 ± 5)% and (20 ± 5)% for plutonium, uranium and thorium, respectively. The chemical recovery for liquid–liquid extraction is found to be (60 ± 7)%, (50 ± 5)% and (70 ± 5)%, for plutonium, uranium and thorium, respectively. The differences in the efficiencies can be ascribed to the oxidation states, the different actinides present in solution. Taking into account that the electrodeposition of the radionuclides under study is quantitative, the total method efficiency is calculated to be (18 ± 15)%, (46 ± 7)% and (15 ± 5)%, for plutonium, uranium and thorium, respectively, at the mBq concentration range. The detection limit of the alpha spectrometric system has been found to be 0.2 mBq/L, suggesting that the method could be successfully applied for the radiometric analysis of the studied radionuclides and particularly uranium in aqueous samples.  相似文献   

9.
Recently, estrogens have been reported to have protective effects against experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Although the molecular mechanism for such a protective effect is currently incomplete, we hypothesized that estradiol may reduce the release of ATP from erythrocytes (ERYs), thereby lowering the production of nitric oxide (NO) by endothelial cells. Here, we report on the use of a microfluidic device to investigate the direct effects of the estrogen estradiol on endothelial cell nitric oxide production. In addition, the incorporation of a thin polycarbonate membrane into the device enabled the passage of ERYs through the device to determine indirect effects of estradiol on NO production that may be meditated by ERYs. When these ERYs were incubated with increasing concentrations of estradiol, the NO production from the endothelial cells was attenuated to a value that was only 59 ± 7% of ERYs in the absence of estradiol. This decrease in NO production coincides with reductions in ERY-derived ATP release in the presence of estradiol. Estradiol is typically reported to have NO-stimulating effects; however, such reports have employed in vitro experimental designs that include only a single cell type. To demonstrate the potential importance of this attenuation of ATP from ERYs, results from a small-scale study show that the ATP release obtained from healthy controls was 138 ± 21 nM (n = 18) while the release from the ERYs obtained from people with MS was 375 ± 51 nM (n = 11). The studies reported here involving multiple cells types (endothelial cells and ERYs) may lead to a reappraisal of the in vivo activities of estradiol.  相似文献   

10.
Amidosulfuric acid and sodium carbonate as standards for acid–base titrimetry were assayed by coulometric titration and gravimetric titration. Amidosulfuric acid was directly assayed by coulometric titration with electrogenerated hydroxide ions, and sodium carbonate was assayed by gravimetric back-titration. For sodium carbonate, excess amount of sulfuric acid, whose concentration was determined by coulometric titration, was added to sodium carbonate, and then gravimetrically back-titrated using a sodium hydroxide solution whose concentration was determined by gravimetric titration using the sulfuric acid. The accuracy of the coulometric titration for amidosulfuric acid and sulfuric acid was evaluated by examining the current efficiency of pulse electrolysis, the amount of the electrolysis current used, and the time spent for a titration. In addition, the drying conditions for high purity primary standards have a significant effect on the titration results due to changes in the acid–base assay. The suitable drying conditions for amidosulfuric acid and sodium carbonate were evaluated by mass-change measurements, coulometric titration and gravimetric titration. The measurement uncertainties were estimated from the uncertainties on the titration processes. Finally, the assays of amidosulfuric acid and sodium carbonate were 99.986% ± 0.010% (k = 2) after drying at 50 °C for 2 h, and 99.970% ± 0.016% (k = 2) after drying at 280 °C for 4 h, respectively. In addition, the international consistency was confirmed by measuring certified reference materials (CRMs) available from different National Metrology Institutes, and the compatibility of values among CRMs was experimentally ascertained.  相似文献   

11.
In the current study, a green and facile route for the synthesis of iron nanoparticles (FeNPs) was adopted. The FeNPs were fabricated via a single step green route using aqueous leaves extract of Plumeria obtusa (P. obtusa) as a capping/reducing and stabilizing agents. The FeNPs were characterized by UV/Vis (Ultraviolet/Visible), FTIR (Fourier Transform Infra-Red spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and XRD (X-Ray Diffraction) techniques. The FeNPs were of spheroidal shape with average size of 50 nm. The biosynthesized FeNPs were further evaluated for their biological activities like antimicrobial, antioxidant and biocompatibility. The FeNPs displayed auspicious antimicrobial activity against bacterial (E. coli, B. subtilis) and fungal strains (A. niger) and S. commune. The test performed against red blood cells (RBCs) lysis (1.22 ± 0.02%) and macrophage (31 ± 0.09%) showed biocompatible nature of FeNPs. In vitro cytotoxicity against AU565 (82.03 ± 0.08–23.65 ± 0.065%) and HeLa (88.61 ± 0.06–33.34 ± 0.06%) cell lines showed cell viability loss in dose dependent manner (FeNPs 25–100 μg/mL). The antioxidant activities values were determined through DPPH, TRPA, NO and H2O2 assays with values 70.23 ± 0.02%, 76.65 ± 0.02 μg AAE/mg, 74.43 ± 0.04% and 67.34 ± 0.03%, respectively. Based on the bioactivities, the green synthesized FeNPs have potential for therapeutic applications.  相似文献   

12.
Simultaneous washing and concentration of magnetic microparticles was demonstrated using a rotational magnetic system under a continuous-flow condition. The rotation of periodically arranged permanent magnets close to a fluidic channel carrying a suspension of magnetic particles allows the trapping and releasing of particles along the fluidic channel in a periodic manner. Each trapping and releasing event resembles one washing cycle in conventional biological assays. Concentration efficiencies of 99.75?±?0.083% at a flow rate of 200 µl/min and 88.10?±?3.17% at a flow rate of 1,000 µl/min and a purification efficiency of 99.10?±?4.3% at a flow rate of 900 µl/min were achieved.  相似文献   

13.
Sodium alginate (Alg) and xanthan gum (XG) based nanocomposite scaffolds reinforced with various amounts of cellulose nanocrystals (CNCs) and/or halloysite nanotubes (HNTs) were prepared by freeze-casting/drying method. In this study, the structure-property-performance relationship was mainly focused and analysed. Morphological analysis showed high porosity and pore-interconnectivity (pore channels) in all obtained scaffolds. Structural analysis demonstrates the good interfacial interactions and uniform dispersion of the CNCs and HNTs, involving partial orientation within the polymeric network. The water uptake capacity (from 14.73.7 ± 0.46 g/g to 11.34 ± 0.32 g/g) and porosity (from 91.7 ± 0.81% to 88.5 ± 0.64%) were reduced. The compressive strengths (in dry state from 91.1 ± 1.2 kPa to 114.4 ± 0.6 kPa and in wet state from 9.0 ± 0.8 kPa to 10.6 ± 0.8 kPa), thermal stability, cytocompatibility (MC3T3-E1 osteoblastic cells) of the nanocomposite scaffolds improved as compared to Alg and AlgX scaffolds without CNCs and/or HNTs. The obtained scaffolds may be appropriate as scaffolding material in bone tissue engineering.  相似文献   

14.
Expression of exogenous DNA in vitro is significantly affected by the particular transfection method utilized. In this study, we evaluated the efficiency of two transfection methods, chemically mediated polyethyleneimine (PEI) treatment and physically mediated electroporation, on a rat heart myoblast cell line, H9c2(2-1). After PEI transfection of pPgk-1/EGFP into H9c2(2-1) cells, EGFP expression could be easily detected by fluorospectrometer after 48 h (210 ± 12 RFU) and continued to increase after 72 h (243 ± 14 RFU). However, when H9c2(2-1) cells were transfected by electroporation (200 V, 500 μF, and one pulse), low level EGFP expression was observed after 48 h (49 ± 4 RFU) or 72 h (21 ± 14 RFU). In contrast, the easily transfectable control CHO-K1 cell line displayed a stronger EGFP expression than the H9c2(2-1) cells either by PEI or electroporation transfection. When transfection efficiencies were assayed by flow cytometry after 72 h, 13.6 ± 2.2% of PEI and 10.1 ± 1.5% of electroporation (250 V, 500 μF, and two pulses) transfected cells of H9c2(2-1) expressed EGFP, and PEI-transfected cells appeared to be less damaged (viability 93.6%) as compared to electroporation-transfected cells (39.5%). However, both PEI and electroporation (580 V, 50 Ω, and 50 μF) were effective for transfection of CHO-K1 with a higher efficiency, cell viability, and EGFP expression than H9c2(2-1). Our results indicate that the transfection efficiency of different methods varies among cell lines and that PEI is more efficient than electropolation for transfection of H9c2(2-1) whereas both PEI and electroporation are suitable for CHO-K1 transfection.  相似文献   

15.
5‐Fluorouracil (5‐FU) is widely used against many types of solid cancer in clinics. However, because of its limitations such as short half‐life, poor oral absorption and rapid clearance by dihydropyrimidine dehydrogenase have limited its applications. In current study, new in situ chemically grafted thermogels for prolonged drug release are formed on the basis of poloxamer 407 (PF127) and carboxymethyl chitosan (CMCS) using glutaraldehyde as cross‐linking agent. The phase transition from sol to gel state at body temperature was confirmed by tube titling, rheological analysis, and optical transmittance determinations. Swelling and drug release experiments conducted at various pH and temperature demonstrated that developed formulations are thermoresponsive with maximum swelling and release below critical gelation temperature (CGT) (pH 7.4, 25°C). Cells growth inhibition study confirmed the biocompatibility of thermogels against L929 cell lines. Methyl thiazolyl tetrazolium (MTT) assay confirmed that 5‐FU–loaded thermogels have the potential to cause cells death against HeLa and MCF‐7 cancer lines. The IC50 values calculated for pure 5‐FU solution (27 ± 0.81 μg/mL for HeLa and 24 ± 0.58 μg/mL for MCF‐7) were found higher in comparison with 5‐FU–loaded thermogels, against HeLa (17 ± 0.39 μg/mL) and MCF‐7 (14 ± 0.67 μg/mL). Fourier transform infrared (FTIR) confirmed the new structure formation and chemical grafting between PF127 and CMCS. Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses proved the phase transition around physiologic temperature range, while scanning electron microscopy (SEM) analysis displayed the presence of connected pores in the cross section of thermogels facilitating the uptake of solvents and drug particles. Altogether, results concluded that developed chemically grafted thermogels can be used in vivo for prolonged drug release after subcutaneous administration.  相似文献   

16.
《中国化学快报》2023,34(4):108071
Biopolymer based hydrogels are highly adaptable, compatible and have shown great potential in biological tissues in biomedical applications. However, the development of bio-based hydrogels with high strength and effective antibacterial activity remains challenging. Herein, a series of Vanillin-cross-linked chitosan nanocomposite hydrogel interfacially reinforced by g-C3N4 nanosheet carrying starch-caped Ag NPs were prepared for wound healing applications. The study aimed to enhance the strength, sustainability and control release ability of the fabricated membranes. Starch-caped silver nanoparticles were incorporated to enhance the anti-bacterial activities The fabricated membranes were assessed using various characterization techniques such as FT-IR, XRD, SEM, mechanical testing, Gel fraction and porosity alongside traditional biomedical tests i.e., swelling percentage, moisture retention ability, water vapor transmission rate, oxygen permeability, anti-bacterial activity and drug-release of the fabricated membranes. The mechanical strength reached as high as 25.9 ± 0.24 MPa for the best optimized sample. The moisture retention lied between 87–89%, gel fraction 80–85%, and water vapor transmission up to 104 ± 1.9 g/m2h showing great properties of the fabricated membrane. Swelling percentage surged to 225% for blood while porosity fluctuated between 44% ± 2.1% and 52.5% ± 2.3%. Oxygen permeability reached up to 8.02 mg/L showing the breathable nature of fabricated membranes. The nanocomposite membrane shown excellent antibacterial activity for both gram-positive and gram-negative bacteria with a maximum zone of inhibition 30 ± 0.25 mm and 36.23 ± 0.23 mm respectively. Furthermore, nanoparticles maintained sustainable release following non-fickian diffusion. The fabricated membrane demonstrated the application of inorganic filler to enhance the strength of biopolymer hydrogel with superior properties. These results envisage the potential of synthesized membrane to be used as wound dressing, artificial skin and load-bearing scaffolds.  相似文献   

17.
《中国化学快报》2023,34(8):108129
Exosomes offer ideal biomarkers for liquid biopsies. However, high-efficient capture of exosomes has been proven to be extreme challenging. Here, we report a soluble pH-responsive host-guest-based nanosystem (pH-HGN) for homogeneous isolation of exosomes around physiological pH. The pH-HGN consists of two specifically functionalized modules. First, a pH-responsive module, poly-dimethylaminoethyl methacrylate, provides homogeneous capture circumstances and sharp pH-triggered self-assembly separation in aqueous solution to improve capture efficiency and reduce nonspecific adsorption. Second, a host-guest module, poly-acrylamide azobenzene and β-cyclodextrin linked with exosomes-specific antibody, could act as the "cleavable bridge" to specific capture and subsequent rapid release of captured exosomes through host-guest interaction between β-cyclodextrin and AAAB moieties. The pH-HGN offered high capture efficiencies for exosomes from two different cell lines, which were 90.2% ± 0.28% and 87.0% ± 4.6% for H1299 and MCF-7 cell-derived exosomes, respectively. The purity of isolated exosomes was (1.49 ± 0.71) × 1011 particles/µg, which was 4.1 times higher compared with the gold standard ultracentrifugation (UC) method. Furthermore, the isolated exosomes via the pH-HGN can preserve well integrity and biological activity. The developed pH-HGN was further successfully applied to differentiate lung cancer patients from healthy persons. These findings indicated that pH-HGN is a promising strategy in exosomes-based research and downstream applications.  相似文献   

18.
Kinkeliba (C. micranthum) is a tropical plant widely used for its tremendous phytochemicals and biological activities. In the present study, three green carboxylic acid-based natural deep eutectic solvents (NADESs) were used to assess the extraction of phenolic compounds in terms of total phenolic content (TPC), total flavonoid content (TFC), individual phenolic compounds and antioxidant capacity (DPPH and FRAP assays) from dried C. micranthum leaves. For the synthesis of NADESs choline chloride was used as hydrogen bond acceptors (HBA) in combination with lactic acid (ChLa), acetic acid (ChAa) and tartaric acid (ChTa) as hydrogen bond donors (HBDs). The conventional solvents including distilled water, pure methanol and pure ethanol were used for comparison. Three extraction methods including maceration extraction (ME), homogenate-assisted extraction (HAE) and ultrasound-assisted extraction (UAE) were tested to determine the best extraction conditions. The solvents combined with the extraction methods were successfully applied for the recovery of phenolic compounds from C. micranthum leaves. ChLa exhibited the highest performance giving the TPC (21.12 ± 0.13–23.62 ± 0.58 mg GAE/g, followed by ChAc (15.49 ± 0.13–18.85 ± 0.39 mg GAE/g), water (17.08 ± 0.32–18.13 ± 0.13 mg GAE/g), ChTa (14.49 ± 0.26–17.44 ± 0.19 mg GAE/g), methanol (7.46 ± 0.45–11.64 ± 0.32 mg GAE/g) and ethanol (2.88 ± 0.39–4.60 ± 0.39 mg GAE/g), respectively. For TFC, ChLa (4.38 ± 0.09–5.01 ± 0.09 mg ECE/g) was the most prominent solvent, followed by ChAc (2.84 ± 0.04–5.01 ± 0.36 mg ECE/g), methanol (1.93 ± 053–4.85 ± 0.04 mg ECE/g), ethanol (1.49 ± 0.36–4.16 ± 0.04 mg ECE/g), ChTa (1.09 ± 0.04–3.22 ± 0.13 mg ECE/g) and water (1.15 ± 0.04–1.37 ± 0.44 mg ECE/g), respectively. The acidic NADESs especially ChLa and ChAa exhibited the best efficiencies compared to the conventional solvents. Furthermore, UAE and HAE provided good extraction efficiency in a short extraction time (30 min) in terms of the TPC, TFC, individual phenolic compounds and the antioxidant capacity compared to ME which gave a similar yield with 12 h of extraction time. Principal component analysis (PCA) showed that C. micranthum extracts could clearly be discriminated in terms of phytochemical compounds and antioxidant capacity and UAE, HAE or ME combined with ChLa ChAc or ChTa were the best choices to higher extraction efficiency.  相似文献   

19.
8-Hydroxy-deoxyguanosine (8-OH-dG) DNA adduct is one of the most frequently used biomarkers reporting on the oxidative stress that leads to DNA damage. More sensitive and reliable microfluidic devices are needed for the detection of these biomarkers of interest. We have developed a capillary electrophoresis (CE)-based microfluidic device with an electroplated palladium decoupler that provides significantly improved detection limit, separation efficiency, and resolving power. The poly(dimethylsiloxane) (PDMS)/glass hybrid device has fully integrated gold microelectrodes covered in situ with palladium nanoparticles using an electroplating technique. The performance and coverage of the electrodes electroplated with palladium particles were evaluated electrochemically and via scanning electron microscope (SEM) imaging, respectively. The performance of the device was tested and evaluated with different buffer systems, pH values, and electric field strengths. The results showed that this device has significantly improved resolving power, even at separation electric field strengths as high as 600 V cm−1. The detection limit for the 8-OH-dG adduct is about 20 attomoles; the concentration limit is on the order of 100 nM (S/N = 3). A linear response is reported for both 8-OH-dG and dG in the range from 100 nM to 150 μM (≈100 pA μM−1) with separation efficiencies of approximately 120,000–170,000 plates m−1.  相似文献   

20.
Chitosan microparticles were prepared with the purpose of incorporating all-trans retinoic acid (ATRA). Morphology, drug content, release behavior and the interaction between chitosan and ATRA were investigated. Chitosan microparticles presented irregular and rough surface and drug content of 47±3%. The results of DSC and IR spectroscopy demonstrated interaction between drug and polymer resulting from retinoate or retinoamide formation. The drug release study showed that approximately 90% of drug was not released from microparticles until the end of experiment (48 h). That release behavior was probably due to the strong drug–polymer interaction and the more compact network of microparticles formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号