共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic solar cells have made rapid progress in the last two decades due to the innovation of conjugated materials and photovoltaic devices. Microphase separation that connects with materials and devices plays a crucial role in the charge generation process. In this account, we summary our recent works of developing new crystalline conjugated polymers to control the microphase separation in thin films in order to realize high performance in solar cells, including crystalline diketopyrrolopyrrole‐based donor polymers, perylene bisimide‐based electron acceptors, and “double‐cable” conjugated polymers that contain covalently‐linked crystalline donor and acceptor in one material for single‐component organic solar cells. 相似文献
2.
P. Blake J. St.Onge Michael U. Ocheje Mariia Selivanova Simon Rondeau‐Gagn 《Chemical record (New York, N.Y.)》2019,19(6):1008-1027
Organic bulk heterojunction solar cells are promising candidates as future photovoltaic technologies for large‐scale and low‐cost energy production. It is, therefore, not surprising that research on the design and preparation of these types of organic photovoltaics has attracted a lot of attention since the last two decades, leading to constantly growing values of energy conversion and efficiency. Combined with the possibility of a large‐scale production via roll‐to‐roll printing techniques, bulk heterojunction solar cells enable the fabrication of conformable, light‐weight and flexible light‐harvesting devices for point‐of‐use applications. This perspective review will highlight the recent advances toward mechanically robust and intrinsically stretchable bulk heterojunction solar cells. Mechanically robust fullerene‐based and all‐polymer devices will be presented, as well as a comprehensive overview of the recent challenges and characterization techniques recently developed to overcome some of the challenges of this research area, which is still in its infancy. 相似文献
3.
4.
Benzothiadiazole(BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells(OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed,focusing on the backbone engineering(such as by using different copolymerized building blocks), side chain engineering(such as by using linear or branch side units), using heteroatoms(such as F, O and S atoms, and CN group), etc. These modifications enable BT-polymers to exhibit distinct absorption spectra(with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies(PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BTpolymers for OSCs, from donor to acceptor, via selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices. 相似文献
5.
Ming Liu Pu Fan Dr. Qin Hu Prof. Thomas P. Russell Prof. Yao Liu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(41):18288-18292
Self-doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3-dibromopropane ( NDI-NI ) or trans-1,4-dibromo-2-butene ( NDI-CI ) via quaternization polymerization. These NDI-based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene-based, non-fullerene-based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI-NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI-CI , affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air-stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics. 相似文献
6.
7.
Tandem-junction organic solar cells require solar cells with visible light photo-response as front cells, in which an open-circuit voltage (Voc) above 1.0 V is highly demanded. In this work, we are able to develop electron acceptors to fabricate non-fullerene organic solar cells (NFOSCs) with a very high Voc of 1.14 V. This was realized by designing perylene bisimide (PBI)-based conjugated materials fused with benzodithiophene, in which Cl and S atom were introduced into the molecules in order to lower the frontier energy levels. The fused structures can reduce the aggregation of PBI unit and meanwhile maintain a good charge transport property. The new electron acceptors were applied into NFOSCs by using Cl and S substituted conjugated polymers as electron donor, in which an initial power conversion efficiency of 6.63 % and a high Voc of 1.14 V could be obtained. The results demonstrate that the molecular design by incorporating Cl and S atom into electron acceptors has great potential to realize high performance NFOSCs. 相似文献
8.
Yujie Xu Hang Zhou Pengyi Duan Baojie Shan Wenjing Xu Jian Wang Mei Liu Fujun Zhang Qianqian Sun 《Molecules (Basel, Switzerland)》2022,27(19)
Interface modification is an important way to get better performance from organic solar cells (OSCs). A natural biomolecular material methionine was successfully applied as the electron transport layer (ETL) to the inverted OSCs in this work. A series of optical, morphological, and electrical characterizations of thin films and devices were used to analyze the surface modification effects of methionine on zinc oxide (ZnO). The analysis results show that the surface modification of ZnO with methionine can cause significantly reduced surface defects for ZnO, optimized surface morphology of ZnO, improved compatibility between ETL and the active layer, better-matched energy levels between ETL and the acceptor, reduced interface resistance, reduced charge recombination, and enhanced charge transport and collection. The power conversion efficiency (PCE) of OSCs based on PM6:BTP-ec9 was improved to 15.34% from 14.25% by modifying ZnO with methionine. This work shows the great application potential of natural biomolecule methionine in OSCs. 相似文献
9.
Feng Liu Dan Wang Jun-Yu Li Cheng-Yi Xiao Yong-Gang Wu Wei-Wei Li Guang-Sheng Fu 《高分子科学》2021,39(1):43-50
Side-chain engineering plays a significant role in the design of conjugated materials. In this work, a series of conjugated polymers PBDB-T-R with functionalized groups at the end of side units were developed as electron donor for organic solar cells(OSCs). The donor polymers PBDB-T-I and PBDB-T-OAc with iodine and acetate end groups exhibited similar absorption and energy levels, but showed much improved PCEs in OSCs compared to the polymer PBDB-T-H without substitutions at the end groups. Additionally, we found that PBDB-T-I and PBDB-T-OAc based cells exhibited optimized performance when using chloroform as solution-processed solvent without any additives. These results indicate that these conjugated polymers can act as self-additive to fabricate photoactive layers via solution process in OSCs. 相似文献
10.
11.
Teresa Kraus Dr. Sebastian Lucas Pascal Wolff Anna Aubele Dr. Elena Mena-Osteritz Prof. Peter Bäuerle 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(42):10913-10924
Ambifunctional heterpentacenes with the heteroatom sequence SSNSS in the ladder-type backbone were used either as donor or as nonfullerenic acceptor in solution-processed bulk-heterojunction solar cells. Different acceptor moieties and side chains were inserted. Synthesis and characterization of the systematically varied structural motifs provided insight in structure-property relationships. Moreover, a dimeric heteroacene was synthesized, and the optoelectronic properties were compared to those of its monomeric counterpart. 相似文献
12.
无机材料电子迁移率高、光谱响应范围与太阳光谱匹配,而有机材料价格低廉、合成方法简单、容易制作在基底上,因此在太阳能电池中具有更广阔的应用前景。 目前,阻碍有机太阳能电池发展的主要原因是材料的载流子迁移率低、器件稳定性差、吸收光谱与太阳光谱不匹配,导致光电转换效率较低。 若能将有机、无机材料二者的优点相结合,将可提高有机太阳能电池的能量转换效率。 目前的研究已经取得了一定进展,无机材料在受体层、阴极缓冲层、阳极缓冲层中的应用均不同程度地提高了有机太阳能电池的能量转换效率。 本文综述了目前该领域的研究现状,并对今后的研究提出了展望。 相似文献
13.
Yang Li Wei Huang Dejiang Zhao Lu Wang Zhiqiang Jiao Qingyu Huang Peng Wang Mengna Sun Guangcai Yuan 《Molecules (Basel, Switzerland)》2022,27(6)
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well. 相似文献
14.
Holger Hintz Heiko Peisert Dr. Umut Aygül Florian Latteyer Indro Biswas Peter Nagel Dr. Michael Merz Dr. Stefan Schuppler Dr. Dietrich Breusov Sybille Allard Dr. Ullrich Scherf Prof. Thomas Chassé Prof. 《Chemphyschem》2010,11(1):269-275
We study the electronic structure of 4,7‐bis(5‐methylthiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (MTBT) and its interface properties with gold using X‐ray photoemission spectroscopy (XPS), valence‐band ultraviolet photoemission spectroscopy (UPS), X‐ray absorption spectroscopy (XAS), as well as resonant photoemission (ResPES). MTBT can be regarded as a model molecule for PCPDTBT, a promising candidate for efficient bulk heterojunction solar cells. Almost no contribution of sulfur and only a weak contribution of nitrogen to the HOMO level is found. At the interface with gold, a strong chemical interaction between the sulfur of the benzothiadiazole and gold occurs, which may have consequences for interface properties in devices. 相似文献
15.
16.
Lei Yang Wenxing Gu Lei Lv Yusheng Chen Yufei Yang Pan Ye Jianfei Wu Ling Hong Dr. Aidong Peng Prof. Hui Huang 《Angewandte Chemie (International ed. in English)》2018,57(4):1096-1102
Triplet materials have been employed to achieve high‐performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non‐fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene‐based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. 相似文献
17.
Ming Liu Pu Fan Qin Hu Thomas P. Russell Yao Liu 《Angewandte Chemie (International ed. in English)》2020,59(41):18131-18135
Self‐doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3‐dibromopropane ( NDI‐NI ) or trans‐1,4‐dibromo‐2‐butene ( NDI‐CI ) via quaternization polymerization. These NDI‐based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene‐based, non‐fullerene‐based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI‐NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI‐CI , affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air‐stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics. 相似文献
18.
化学剥离的硫化钨二维层状材料在经过紫外臭氧处理后用作有机太阳能电池的空穴传输层, 可以显著提高电池器件的光电转化效率至8.37%; 作为空穴传输层, 硫化钨二维层状材料可以与经典的空穴传输材料PEDOT:PSS相媲美. 利用X射线光电子能谱(XPS)、拉曼光谱(Raman)、原子力显微镜(AFM)对硫化钨的结构和形貌进行分析. 结果表明, 紫外臭氧处理过后, 氧原子能填充硫化钨因锂插层剥离而产生的硫空位, 减少它的缺陷, 并且使其部分被氧化, 从而改善硫化钨的电学性能. 相似文献
19.
20.
In 2018, several major breakthroughs have been achieved in organic solar cells (OSCs) with the record power conversion efficiency (PCE) reaching over 17 %. With this increased efficiency, it is time to take a step forward to consider how to convert this technology into large scale production. For this, the economic and environmental profile of OSCs should be taken seriously‐simplified synthetic routes and green chemistry methods should be applied. According to previous studies, OSCs are competitive and profitable in the commercial market. However, toxic and/or hazardous chemicals are currently used in materials synthesis and device fabrication of OSCs. In this account, we will talk about contributions and efforts we have made to minimize the economic and environmental disadvantages in the production of OSCs. We will start with the background on how our projects were conceived and will specifically discuss our work on direct arylation and green solvent. Developments of direct arylation for synthesizing conjugated polymers will be illustrated along with our recent finding regarding the effect of green solvents on device performance and stability. 相似文献