首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二茂铁-AQ修饰碳纤维微葡萄糖传感器的研究   总被引:1,自引:0,他引:1  
董绍俊  田敏  刘柏峰 《分析化学》1993,21(3):255-258
本文用二茂铁、AQ成功地制备了微葡萄糖传感器。Eastman-AQ(AQ-55D,AQ29D)是一种新型的聚合物(磺酸酯)阳离于交换剂,涂于电极表面上,形成的膜除具有强的附着力外,同时还具有预富集、离子交换及防污性能。制得的电极具有制作方法简单、快速、重现性好,抗干扰能力强等特点。检测上限15.0 mmol/L,响应时间小于6s。由于AQ强的附着力,二茂铁及酶的流失较小。电极的稳定性有所提高。  相似文献   

2.
一种含芘葡萄糖衍生物的合成及其胶凝行为   总被引:3,自引:0,他引:3  
合成并表征了一种荧光活性小分子胶凝剂——芘磺酰基-丙二胺-葡萄糖(PSDAPG), 考察了其在36种常见溶剂中的胶凝行为. 结果发现, PSDAPG可使其中16种溶剂胶凝. 对癸醇, PSDAPG表现出罕见的超级胶凝能力, 室温下最低胶凝浓度(MGC)达7.0×10-4 g·mL-1. 此外, PSDAPG还是一种既可胶凝水又可胶凝有机溶剂的双性胶凝剂. 扫描电镜(SEM)、傅立叶变换红外光谱(FTIR)、核磁共振(1HNMR)和荧光光谱研究表明,在不同溶剂中, PSDAPG具有不同的聚集结构, 除了芘基之间的疏水π-π堆积作用外, 氢键作用是PSDAPG自发形成三维网络结构的重要驱动力. 实验研究还表明, 溶液态和凝胶态的PSDAPG荧光光谱均同时呈现芘的单体荧光和激基缔合物荧光光谱特征, 但两者的光谱形貌差异显著. 随凝胶的形成, 体系单体荧光发射增强, 激基缔合物荧光发射减弱,表明形成的三维网络结构阻碍了PSDAPG中芘单元的运动性, 使得以Birks途径形成激基缔合物的效率降低.  相似文献   

3.
"标记"芘的激基缔合物荧光在水溶性高分子研究中的应用   总被引:4,自引:0,他引:4  
首先介绍了芘的荧光发射光谱的特点及其激基缔合物荧光、然后给出了用芘标记高分子的各种方式和方法,讨论了水溶性高分子的”标记”芘形成激基缔合物的原理,评述了芘标记高分子箕缔合物荧光在水溶性分子疏水相互作用,静电相互作用、氢键、络合等研究中的应用,也介绍了芘标记激基缔的荧光在高分子凝胶体积相变、分子链运动等领域的研究进展。  相似文献   

4.
在临床医学、生物过程、食品工业中葡萄糖的分析测定一直都占有重要地位。葡萄糖的测定以分光光度法[1]和酶电极法[2]为主。光度法的灵敏度和准确度低,选择性差。第一代酶电极通常采用分子氧作为电子媒介体,但此法背景电流大,易受环境中分子氧浓度的影响。逐渐发展起来的第二代  相似文献   

5.
《Electroanalysis》2004,16(15):1244-1253
This work deals with the study of polymers electrogenerated from different catechols at glassy carbon electrodes and the analytical applications of the resulting modified electrodes for dopamine quantification and glucose biosensing. The electropolymerization was performed from a 3.0×10?3 M catechol solution (catechol, dopamine, norepinephrine, epinephrine or L ‐dopa in a 0.050 M phosphate buffer pH 7.40) by applying 1.00 V for 60 min. The properties of the polymers are very dependent on the nature of the catechol, L ‐dopa being the best. Glassy carbon electrodes modified with melanic polymers electrogenerated from L ‐dopa and norepinephrine were found to be suitable for dopamine determinations in flow systems, although the behavior was highly dependent on the nature of the monomer. Detection limits of 5.0 nM dopamine and interferences of 9.0 and 2.6% for 5.0×10?4 M ascorbic acid and 5.0×10?5 M dopac, respectively, were obtained at the glassy carbon electrode modified with a melanin‐type polymer generated from L ‐dopa (using 1.0×10?3 M AA in the measurement solution). The advantages of using a melanin‐type polymer generated from dopamine to improve the selectivity of glucose biosensors based on carbon paste electrodes containing Pt and glucose oxidase (GOx) are also discussed. The resulting bioelectrodes combines the high sensitivity of metallized electrodes with the selectivity given by the polymeric layer. They exhibit excellent performance for glucose with a rapid response (around 10 seconds per sample), a wide linear range (up to 2.5×10?2 M glucose), low detection limits (143 μM) and a highly reproducible response (R.S.D of 4.9%). The bioelectrodes are highly stable and almost free from the interference of large excess of easily oxidizable compounds found in biological fluids, such as ascorbic acid (AA), uric acid (UA) and acetaminophen.  相似文献   

6.
An amperometric biosensor for determining glucose based on deflavination of the enzyme glucose oxidase and subsequent reconstitution of the apo‐protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The GOx‐reconstituted electrode exhibited excellent electrocatalytic activities towards the reduction and oxidation of hydrogen peroxide as well. The prepared biosensor showed an excellent performance for glucose at +0.5 V with a high sensitivity (5.94 μA/mM) and relatively good response time (~12 s) in a wide concentration range of 1–17 mM (correlation coefficient of 0.9998). The applicability to blood analysis was also evaluated.  相似文献   

7.
Many studies have focused on effective ways to exploit enzyme immobilization on an electrode surface to help improve the performance of enzymatic electrochemical biosensors. Herein, a novel glucose sensor was fabricated by immobilizing glucose oxidase (GOx) onruthenium-based conjugated polymer (CP) and metal-organic framework (MOF) nanocomposites. This has not only reduced the applied potential to 0.2 V (vs. Ag/AgCl), but also improved the effective surface area for enzyme immobilization.PPG@Ru@UiO-66-NH2 was tailored by controlled chemical synthesis from a pre-synthesized water-soluble conjugated polymer (poly(N-phenylglycine)) and metal-organic framework (UiO-66-NH2). The resulting nanocomposites were characterized using Fourier transform infrared spectroscopy, X-ray fluorescence, scanning electron microscopy, and cyclic voltammetry. The PPG@Ru@UiO-66-NH2/GOx coated electrodedisplayed a linear measurementrange for glucose from 1 mM to 10 mM, with a sensitivity of 45.92 μA ⋅ mM−1cm−1 and limit of detection of5 μM( ). Furthermore, the practical application of the fabricatedglucosesensor was tested in simulative blood samples with satisfactoryaccuracy. This approach alsoopens a new door for applications regarding both enzymatic electrochemical biosensors and enzymatic biofuel cells (EBFCs).  相似文献   

8.
Glucose oxidase (GOD) was encapsulated in chitosan matrix and immobilized on a glassy carbon electrode, achieving direct electron transfer (DET) reaction between GOD and electrode without any nano‐material. On basis of such DET, a novel glucose biosensor was fabricated for direct bioelectrochemical sensing without any electron‐mediator. GOD incorporated in chitosan films gave a pair of stable, well‐defined, and quasireversible cyclic voltammetric peaks at about ?0.284 (Epa) and ?0.338 V (Epc) vs. Ag/AgCl electrode in phosphate buffers. And the peak is located at the potentials characteristic of FAD redox couples of the proteins. The electrochemical parameters, such as midpoint potential (E1/2) and apparent heterogeneous electron‐transfer rate constants (ks) were estimated to ?0.311 V and 1.79 s?1 by voltammetry, respectively. Experimental results indicate that the encapsulated GOD retains its catalytic activity for the oxidation of glucose. Such a GOD encapsulated chitosan based biosensor revealed a relatively rapid response time of less than 2 min, and a sufficient linear detection range for glucose concentration, from 0.60 to 2.80 mmol L?1 with a detection limit of 0.10 mmol L?1 and electrode sensitivity of 0.233 μA mmol?1. The relative standard deviation (RSD) is under 3.2% (n=7) for the determination of practical serum samples. The biologic compounds probably existed in the sample, such as ascorbic acid, uric acid, dopamine, and epinephrine, do not affect the determination of glucose. The proposed method is satisfactory to the determination of human serum samples compared with the routine hexokinase method. Both the unique electrical property and biocompatibility of chitosan enable the construction of a good bio‐sensing platform for achieved DET of GOD and developed the third‐generation glucose biosensors.  相似文献   

9.
葡萄糖氧化酶修饰聚苯胺电极的动力学   总被引:1,自引:0,他引:1  
虽然固定酶有吸附、交联、共价结合和捕集等多种方法,但寻找其新的固定方法仍是感兴趣的研究课题。利用导电高聚物的导电性和掺杂作用,将酶直接固定在导电高聚物上,这种方法简单,固定后的酶仍保持原有的活性。用聚苯胺固定葡萄糖氧化酶已有报道。但电极的活性有效期较短。考虑到固定酶的性质不仅取决于酶本身的性质,而且还受载体性质和固定方法的影响,我们曾用还原后的聚苯胺在酶溶液中氧化而固定酶,本文在文献的基础上,研究了葡萄糖氧化酶修饰聚苯胺电极的动力学特性、pH效应及其使用稳定性。  相似文献   

10.
《Electroanalysis》2017,29(12):2719-2726
A novel glucose biosensor was constructed through the immobilization of glucose oxidase (GOx) on gold nanoparticles (Au NPs) deposited, and chemically reduced graphene oxide (rGO) nanocomposite. In the synthesis, tannic acid (TA) was used for the reduction of both graphene oxide, and Au3+ to rGO, and Au NPs, respectively. Also, by harnessing the π‐π interaction between graphene oxide and TA, and protein‐TA interaction, a novel nanocomposite for the fabrication of a third generation biosensor was successfully constructed. Upon the oxidation of TA to quinone, which is easily reducible at the negative potential range, enhanced electron transfer was obtained. The cyclic voltammetry (CV) results demonstrated a pair of well‐defined and quasi‐reversible redox peaks of active site molecule of GOx. The biosensor exhibited a linear response to glucose concentrations varying from 2 to 10 mM with a sensitivity of 18.73 mA mM−1 cm−2. The fabricated biosensor was used for the determination of glucose in beverages.  相似文献   

11.
葡萄糖检测用分子印迹光子晶体的研究   总被引:1,自引:0,他引:1  
基于快速、持续、无创检测技术在血糖监测领域的重要性,以聚甲基丙烯酸甲酯微球阵列为光子晶体制孔模板,以葡萄糖为印迹模板,N-异丙基丙烯酰胺和甲基丙烯酸羟乙酯为混合单体,4-乙烯基苯硼酸为识别基,N,N-亚甲基双丙烯酰胺为交联剂,在制孔模板间隙进行共价型分子印迹聚合,除去制孔模板后,制得具有规整孔结构的新型光学凝胶材料--...  相似文献   

12.
In this paper, the development of a localized surface plasmon resonance (LSPR)-based optical enzyme biosensor using stimuli-responsive hydrogel-silver nanoparticles composite is described. This optical enzyme biosensor was constructed by immobilizing glucose oxidase (GOx) into the stimuli-responsive hydrogel. When a sample solution such as glucose was applied to the surface of this optical enzyme biosensor, the interparticle distances of the silver nanoparticles present in the stimuli-responsive hydrogel were increased, and thus the absorbance strength of the LSPR was decreased. Furthermore, hydrogen peroxide, which was produced by the enzymatic reaction, induced the degradation of highly clustered silver nanoparticles by the decomposition of hydrogen peroxide. Hence, a drastic LSPR absorbance change, which depends on the glucose concentrations, could be observed. On the basis of the abovementioned mechanism, the characterization of the LSPR-based optical enzyme biosensor was carried out. It was found that the LSPR-based optical enzyme biosensor could be used to specifically determine glucose concentrations. Furthermore, the detection limit of this biosensor was 10 pM. Therefore, this LSPR-based optical enzyme biosensor has the potential to be applied in cost-effective, highly simplified, and highly sensitive test kits for medical applications.  相似文献   

13.
《Electroanalysis》2017,29(5):1214-1221
A highly sensitive enzymeless electrochemical glucose sensor has been developed based on the simply prepared cathodized gold nanoparticle‐modified graphite pencil electrode (AuNP‐GPE). Cyclic voltammetry (CV) experiments show that AuNP‐GPE is able to oxidize glucose partially at low potential (around −0.27) whereas the bare GPE cannot oxidize glucose in the entire tested potential windows. Besides, fructose and sucrose cannot be oxidized at potential lower than +0.1 V at AuNP‐GPE. As a result, the glucose oxidation peak at around −0.27 V is suitable enough for selective detection of glucose in the presence of fructose and sucrose. Cathodization of AuNP‐GPE under optimum condition (‐1.0 V for 30 s) in the same glucose solution before voltammetric measurement enhanced glucose oxidation peak current around −0.27 V to achieve an efficient electrochemical sensor for glucose with a detection limit of 12 μM and dynamic range between 0.05 to 5.0 mM with a good linearity (R2= 0.999). Almost no interference effect was observed for sensing of glucose in the presence of ascorbic acid, alanine, phenylalanine, fructose, sucrose, and NaCl.  相似文献   

14.
通过油胺(Oleylamine)还原法制备了金纳米线(Au nanowires),将其与酸化处理的多壁碳纳米管(MWCNTs)通过层层组装制备了Au nanowires-MWCNTs复合结构修饰的玻碳电极(Au nanowires-MWCNTs/GCE).电化学研究结果表明,与单纯Au nanowires或MWCNTs修饰电极相比,Au nanowires-MWCNTs/GCE对葡萄糖表现出更优良的电催化性能.以Au nanowires-MWCNTs/GCE为阳极,电沉积Pt膜电极(Pt/GCE)为阴极,构建了葡萄糖/O2燃料电池.测试结果表明,构建的燃料电池的开路电位(OCP)为0.57 V,在0.44 V下最大功率密度(Pmax)为0.28 m W/cm2.  相似文献   

15.
16.
陈慧娟  朱建君  余萌 《分析化学》2013,41(8):1243-1248
采用滴涂法和电沉积法制备了石墨烯/纳米氧化锌复合膜修饰玻碳电极,再将葡萄糖氧化酶固定在修饰电极表面制成了电化学生物传感器,用于葡萄糖的灵敏测定。用循环伏安法在-0.7~-0.1 V范围内研究了葡萄糖氧化酶在修饰电极上的直接电化学行为。结果表明,石墨烯/纳米氧化锌复合膜能很好地保持葡萄糖氧化酶的生物活性,并显著促进了其电化学过程。在0.1 mol/L磷酸盐缓冲溶液(pH 7.0)中,固定在修饰电极上的葡萄糖氧化酶呈现出一对近乎可逆的氧化还原峰,并且对葡萄糖的氧化具有良好的催化作用。葡萄糖氧化酶在修饰电极上的电子转移常数ks为1.42 s-1,修饰电极对葡萄糖催化的米氏常数Kampp为14.2μmol/L。线性范围为2.5×10-6~1.5×10-3mol/L,检出限为2.4×10-7mol/L(S/N=3)。此修饰电极具有良好的导电性能、稳定性和重现性,可用于实际样品的分析测定。  相似文献   

17.
《Electroanalysis》2006,18(15):1485-1491
A novel cheap and simple amperometric biosensor, based on the immobilization of glucose oxidase (GOD) into anionic clay; layered double hydroxides (LDHs) [Zn3‐Al‐Cl] is presented. GOD can be entrapped in the LDHs gel via electrostatic interaction. Amperometric detection of glucose with an unmediated sensor at 0.6 V (vs. SCE) results in a rapid response (5 s), a wide linear range of 0.001–12 mM, as well as good operational stability. The low detection limit was 0.1 μM at 3σ. The apparent Michaelis‐Menten constant (K is 4.4 mM. The general interferences that coexisted in blood serum do not affect glucose determination, except for uric acid. In addition, optimization of the biosensor construction and the effects of the applied potential on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

18.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   

19.
We designed a novel water soluble topological structure polymer‐ferrocene‐ terminated hyperbranched polyurethane (HPU‐Fc) with good water solubility. The redox behaviors and the electrochemical kinetics parameters of HPU‐Fcs were explored by cyclic voltammetry (CV) according to electrochemical principle. The topological structure polymer was applied for the design and engineering of non‐enzymatic glucose sensor. The designed sensor showed good response to glucose concentration with good stability, favorable accuracy and high selectivity. The electrode was also used to detect glucose in blood samples, and the glucose contents detected by the electrode were in good agreement with those from the hospital where a common automatic biochemical analyzer (HF240–300) was used. This finding makes HPU‐Fc a promising biosensor for directly sensing glucose.  相似文献   

20.
采用亚硝基五氰合铁酸铁(FePCNF)粉末与碳粉质量比为2∶3混合,制备了FePCNF修饰碳糊电极.研究了FePCNF修饰碳糊电极在KNO3溶液中的电化学行为和扫速、pH值及不同支持电解质的影响.该电极可用于催化氧化检测葡萄糖.实验表明:FePCNF修饰碳糊电极在0.5 mol/L KNO3溶液中有一对灵敏的氧化还原峰,峰电流与扫速呈线性关系.氧化峰电流与葡萄糖的浓度在2.0×10-6~2.4×10-5 mol/L之间有良好的线性关系(r=0.9934),检出限为6.3×10-7 mol/L.该电极具有良好的稳定性和重现性,适合于微量葡萄糖的检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号