首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approximate expression is derived for the electrophoretic mobility of a spherical charged colloidal particle carrying low zeta potential covered with an ion-penetrable uncharged polymer layer in an electrolyte solution. This expression, which becomes Henry's mobility formula in the absence of the polymer layer, is a modification of Henry's mobility formula by taking into account the presence of the uncharged polymer layer.  相似文献   

2.
A general electroacoustic theory is presented for the macroscopic electric field in a dilute suspension of spherical colloidal particles in an electrolyte solution, which consists of the colloid vibration potential (CVP) and the ion vibration potential (IVP), induced by an oscillating pressure gradient field due to an applied sound wave. This is a unified theory that unites previous theories for CVP and those for IVP. Approximate analytic expressions are derived for CVP and IVP. The obtained IVP expression agrees with Debye's formula that is corrected by taking into account the force acting on the electrolyte ions as a result of the pressure gradient in the sound wave. The obtained CVP expression is correct to the first order of the particle zeta potential and applicable for arbitrary kappaalpha, where kappa is the Debye-Hückel parameter and alpha is the particle radius. It is found that an Onsager relation holds between CVP and dynamic electrophoretic mobility. It is also shown that the CVP from particles with very small kappaalpha approaches IVP; that is, in the limit of very small kappaalpha a particle behaves like an ion.  相似文献   

3.
Ohshima H 《Electrophoresis》2002,23(13):1995-2000
A general expression is derived for the electrophoretic mobility of a spherical charged colloidal particle covered with an uncharged polymer layer in an electrolyte solution in an applied electric field for the case where the particle zeta potential is low. It is assumed that electrolyte ions as well as water molecules can penetrate the polymer layer. Approximate analytic expressions for the electrophoretic mobility of particles carrying low zeta potentials are derived for the two extreme cases in which the particle radius is very large or very small.  相似文献   

4.
We derive the general expression for the diffusiophoretic mobility of a cylindrical particle oriented parallel to an applied electrolyte concentration gradient field in a symmetrical electrolyte solution. From the general mobility expression as combined with an approximate analytic expression with negligible error for the electric potential distribution around a cylinder, an accurate analytic mobility expression is obtained, which is applicable for arbitrary values of the particle zeta potential and the electrical double layer thickness. It is also found that the low zeta potential approximation is an excellent approximation for low-to-moderate values of the particle zeta potential.  相似文献   

5.
When the electrophoretic mobility of a particle in an electrolyte solution is measured, the obtained electrophoretic mobility values are usually converted to the particle zeta potential with the help of a proper relationship between the electrophoretic mobility and the zeta potential. For a particle with constant surface charge density, however, the surface charge density should be a more characteristic quantity than the zeta potential because for such particles the zeta potential is not a constant quantity but depends on the electrolyte concentration. In this article, a systematic method that does not require numerical computer calculation is proposed to determine the surface charge density of a spherical colloidal particle on the basis of the particle electrophoretic mobility data. This method is based on two analytical equations, that is, the relationship between the electrophoretic mobility and zeta potential of the particle and the relationship between the zeta potential and surface charge density of the particle. The measured mobility values are analyzed with these two equations. As an example, the present method is applied to electrophoretic mobility data on gold nanoparticles (Agnihotri, S. M.; Ohshima, H.; Terada, H.; Tomoda, K.; Makino, K. Langmuir 2009, 25, 4804).  相似文献   

6.
The equations developed by C. S. Mangelsdorf and L. R. White (J. Chem. Soc. Faraday Trans. 88, 3567 (1992)) to calculate the electrophoretic mobility of a solid, spherical colloidal particle subjected to an oscillating electric field are solved analytically for low zeta potential, ζ, to obtain the electrophoretic mobility correct to (eζ/kBT). Due to severe numerical cancellation of the exponential integrals, two forms of the analytic solution are presented which are numerically stable for different regions of κa (where a is the particle radius and κ-1 is the Debye screening length). This low-ζ analytic solution is valid for all frequencies, particle sizes, and electrolyte concentrations, and agrees to at least two significant figures with the "exact" results obtained by Mangelsdorf and White at eζ/kBT = 1 (ζ ≈ 25 mV). A program implementing this low-zeta analytic formula for the electrophoretic mobility is available from the authors.  相似文献   

7.
A charged colloidal particle which is suspended in an electrolyte solution drifts due to an external voltage application. For direct currents, particle motion is affected by two separate mechanisms: electro-osmotic slip associated with the electric field and chemi-osmotic slip associated with the inherent salt concentration gradient in the solution. These two mechanisms are interrelated and are of comparable magnitude. Their combined effect is demonstrated for cation-exchange electrodes using a weak-current approximation. The linkage between the two mechanisms results in an effectively modified mobility, whose dependence on the particle zeta potential is nonlinear. At small potentials, the electro-osmotic mechanism dominates and the particle migrates according to the familiar Smoluchowski mobility, linear in the electric field. At large zeta potentials, chemiosmosis becomes dominant: for positively charged particles, it tends to arrest motion, leading to mobility saturation; for negatively charged particles, it enhances the drift, effectively leading to a shifted linear dependence of the mobility on the zeta potential, with twice the Smoluchowski slope.  相似文献   

8.
An approximate analytic expression is derived for the dynamic electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution in an applied oscillating electric field. This expression, which takes into account the relaxation effects, is applicable for all values of zeta potential at large kappa a (kappa a > or = ca. 30) and omega/2pi < or = ca. 10 MHz, where kappa is the Debye-Hückel parameter, a is the particle radius, and omega is the frequency of the electric field. It is shown that the obtained mobility expression is in excellent agreement with the exact numerical results of Mangelsdorf and White (J. Chem. Soc., Faraday Trans. 1992, 88, 3567).  相似文献   

9.
The electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution with large kappaa (where kappa= Debye-Hückel parameter and a= particle radius) tends to a nonzero constant value in the limit of high zeta potential. It is demonstrated that this is caused by the fact that counterions condensed near the highly charged particle surface do not contribute to the electrophoretic mobility and only co-ions govern the mobility. A simple method to derive the limiting electrophoretic mobility expression is given. The present method is also applied to cylindrical particles, showing that the leading term of the limiting electrophoretic mobility of a cylindrical particle in a transverse field with large kappaa is the same as that of a spherical particle. The electrophoretic mobility of a cylindrical particle in a tangential field, on the other hand, is proportional to the particle zeta potential and does not exhibit a constant limiting value for high zeta potentials.  相似文献   

10.
Expressions are derived for the electrophoretic mobility of a cylindrical charged colloidal particle carrying a low zeta potential covered with an ion-penetrable uncharged polymer layer in an electrolyte solution. These expressions involve numerical integration of modified Bessel functions but are easily calculable with Mathematica. The obtained mobility expressions are a modification of Henry's mobility formula for a cylindrical particle taking into account the presence of the uncharged polymer layer.  相似文献   

11.
A general expression as well as approximate expressions are derived for the electrophoretic mobility of dilute spherical colloidal particles in a salt-free medium containing only counter ions. It is shown that there is a certain critical value of the particle surface charge. When the particle surface charge is lower than the critical value, the electrophoretic mobility is proportional to the particle surface charge or the particle zeta potential, following Hückel's formula. When the particle surface charge is higher than the critical value, the electrophoretic mobility becomes independent of the particle surface charge. This is due to the effect of counter ion condensation in the vicinity of the particle surface.  相似文献   

12.
The electrophoresis in a monodisperse suspension of dielectric spheres with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations, which govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell, are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the electrophoretic mobility of the colloidal sphere in closed form correct to O(zeta) are obtained. Based on the solution of the electrokinetic equations in a cell, a closed-form formula for the electric conductivity of the suspension up to O(zeta(2)) is derived from the average electric current density. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made for both the electrophoretic mobility and the electric conductivity. Copyright 2001 Academic Press.  相似文献   

13.
Pyell U 《Electrophoresis》2008,29(3):576-589
The electrophoretic mobility of silica-encapsulated semiconductor nanocrystals (quantum dots) dependent on the pH and the ionic strength of the separation electrolyte has been determined by CE. Having shown the viability of the approach, the electrophoretic mobility mu of the nanoparticles investigated is calculated for varied zeta potential zeta, particle radius r, and ionic strength I employing an approximate analytical expression presented by Ohshima (J. Colloid Interface Sci. 2001, 239, 587-590). The comparison of calculated with measured data shows that the experimental observations exactly follow what would be expected from theory. Within the parameter range investigated at fixed zeta and I there is an increase in mu with r which is a nonlinear function. This dependence of mu on size parameters can be used for the size-dependent separation of particles. Modeling of mu as function of I and zeta makes it possible to calculate the size distribution of nanoparticles from electrophoretic data (using the peak shape of the particle zone in the electropherogram) without the need for calibration provided that zeta is known with adequate accuracy. Comparison of size distributions calculated via the presented method with size histograms determined from transmission electron microscopy (TEM) micrographs reveals that there is an excellent matching of the size distribution curves obtained with the two independent methods. A comparison of calculated with measured distributions of the electrophoretic mobility showed that the observed broad bands in CE studies of colloidal nanoparticles are mainly due to electrophoretic heterogeneity resulting from the particle size distribution.  相似文献   

14.
Hiroyuki Ohshima 《Electrophoresis》2021,42(21-22):2182-2188
Approximate analytic expressions are derived for the electrophoretic mobility of a weakly charged spherical soft particle consisting of the particle core covered with a surface layer of polymers in an electrolyte solution. The particle core and the surface polymer layer may be charged or uncharged. The obtained electrophoretic mobility expressions, which involve neither numerical integration nor exponential integrals, are found to be in excellent agreement with the exact numerical results. It is also found that the obtained mobility expressions reproduce all the previously derived limiting expressions and approximate analytic expressions for the electrophoretic mobility of a weakly charged spherical soft particle.  相似文献   

15.
This paper outlines a complete and self-consistent cell model theory of the electrokinetics of dense spherical colloidal suspensions for general electrolyte composition, frequency of applied field, zeta potential, and particle size. The standard electrokinetic equations, first introduced for any given particle configuration, are made tractable to computation by averaging over particle configurations. The focus of this paper is on the systematic development of suitable boundary conditions at the outer cell boundary obtained from global constraints on the suspension. The approach is discussed in relation to previously published boundary conditions that have often been introduced in an ad hoc manner. Results of a robust numerical calculation of high-frequency colloidal transport properties, such as dynamic mobility, using the present model are presented and compared with some existing dense suspension models.  相似文献   

16.
A relation between the dynamic electrophoretic mobility of spherical colloidal particles in a concentrated suspension and the colloid vibration potential (CVP) generated in the suspension by a sound wave is obtained from the analogy with the corresponding Onsager relation between electrophoretic mobility and sedimentation potential in concentrated suspensions previously derived on the basis of Kuwabara's cell model. The obtained expression for CVP is applicable to the case where the particle zeta potential is low, the particle relative permittivity is very small, and the overlapping of the electrical double layers of adjacent particles is negligible. It is found that CVP shows much stronger dependence on the particle volume fraction φ than predicted from the φ dependence of the dynamic electrophoretic mobility. It is also suggested that the same relation holds between the electrokinetic sonic amplitude of a concentrated suspension of spherical colloidal particles and the dynamic electrophoretic mobility. Copyright 1999 Academic Press.  相似文献   

17.
 A general theory for the electrophoresis of a cylindrical soft particle (i.e., a cylindrical hard colloidal particle coated with a layer of ion-penetrable polyelectrolytes) in an electrolyte solution in an applied transverse or tangential electric field is proposed. This theory unites two different electrophoresis theories for cylindrical hard particles and for cylindrical polyelectrolytes. That is, the general mobility expression obtained in this paper tends to the mobility expression for a cylindrical hard particle for the case where the polyelectrolyte layer is absent or the frictional coefficient in the poly-electrolyte layer becomes infinity, whereas it tends to that for a cylin-drical polyelectrolyte in the absence of the particle core. Simple approximate analytic mobility expressions are also presented. Received: 29 August 1996 Accepted: 7 November 1996  相似文献   

18.
Smoluchowski equation and the Monte Carlo simulations are used to study the conditions leading to the reversal of the electrophoretic mobility. Zeta (zeta) potential is identified with the diffuse potential at the shear plane which, we argue, must be placed at least one ionic diameter away from the colloidal surface. For sufficiently strongly charged colloids, zeta potential changes sign as a function of the multivalent electrolyte concentration, resulting in a reversal of the electrophoretic mobility. This behavior occurs even for very small ions of 4 A diameter as long as the surface charge density of the colloidal particles is sufficiently large and the concentration of 1:1 electrolyte is sufficiently low.  相似文献   

19.
The diffusiophoretic motion of a polyelectrolyte molecule or charged floc in an unbounded solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is analytically studied. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration distributions (or electrochemical potential energies), and the fluid velocity field inside and outside the porous particle are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a charged porous sphere with the density of the fixed charges as the small perturbation parameter. An analytical expression for the diffusiophoretic mobility of the charged porous sphere in closed form is obtained from a balance between its electrostatic and hydrodynamic forces. This expression, which is correct to the second order of the fixed charge density of the particle, is valid for arbitrary values of kappaa and lambdaa, where kappa is the reciprocal of the Debye screening length, lambda is the reciprocal of the length characterizing the extent of flow penetration inside the particle, and a is the particle radius. Our result to the first order of the fixed charge density agrees with the corresponding solution for the electrophoretic mobility obtained in the literature. In general, the diffusiophoretic mobility of a porous particle becomes greater as the hindrance to the diffusive transport of the solute species inside the particle is more significant.  相似文献   

20.
An approximate expression is derived for the electrophoretic mobility μ of an infinitely long cylindrical particle of radius a and zeta potential ζ oriented perpendicular to an applied electric field in an electrolyte solution. The obtained expression is applicable for cylinders with large radii such that κa≥ca. 30, where κ is the Debye–Hückel parameter. It is shown that the obtained mobility expression μ , which consists of Smoluchowski’s equation and the correction term of the order of exp(zeζ∣/2kT)/κa (where z is the valence of counterions in the electrolyte solution, e is the elementary electric charge, k is Boltzmann’s constant, and T is the absolute temperature), coincides with the mobility expression for a sphere of radius a and zeta potential ζ correct to the order of exp(zeζ∣/2kT)/κa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号