首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of a non-noble metal cathode ORR catalyst with low cost, high activity and high stability has become an inevitable trend in MFC. The purpose of this study is to develop an efficient and stable Cu, N-codoped porous carbons catalysts with multi-pore structure for MFC. Herein, Cu, N-codoped porous carbons materials (Cu−NC−T) with high N content and multi-pore structure were successfully developed by co-pyrolysis with MOF-199 and melamine. By contrast, Cu-doped porous carbon (Cu−C−T) without melamine was synthesized using MOF-199 as template. The results showed that Cu−NC−T possessed a rough octahedral crystal with a unique multi-mesopore structure with pore centers of 3.4 nm and 11.2 nm, respectively. Owing to high N content, abundantly exposed Cu−Nx active sites and the multi-pore structure, Cu−NC−800 had a pronounced electrochemical ORR activity in neutral solution (onset potential and limiting current density were 0.161 V and −6.256 mA ⋅ cm−2), which were slightly lower than 20 wt % Pt/C (0.189 V and −6.479 mA ⋅ cm−2). Moreover, the MFC with Cu−NC−800 showed a power density of 662.8±3.6 mW ⋅ m−2, which was higher than that of Cu−C−800 (425.7±3.9 mW ⋅ m−2) and was slightly lower than that 20 wt % Pt/C (815.0±6.2 mW ⋅ m−2). The output voltage of MFC with Cu−NC−T had no obvious decreasing trend in 30 days, demonstrating that the Cu−NC−T had great stability.  相似文献   

2.
《Journal of Energy Chemistry》2017,26(6):1187-1195
This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed on the Fe–N/SLG sheets after a carbonization process. The maximum power density of1210 ± 23 m W·m~(-2) obtained with Fe–N/SLG catalyst in an MFC was 10.7% higher than that of Pt/C catalyst(1080 ± 20 mW ·m~(-2)) under the same condition. The results of RDE test show that the ORR electron transfer number of Fe–N/SLG was 3.91 ± 0.02, which suggested that ORR catalysis proceeds through a four-electron pathway. The whole time of the synthesis of electro-catalysts is about 10 h, making the research take a solid step in the MFC expansion due to its low-cost, high efficiency and favorable electrochemical performance. Besides, we compared the electrochemical properties of catalysts using SLG, high conductivity graphene(HCG, a kind of multilayer graphene) and high activity graphene(HAG, a kind of GO) under the same conditions, providing a solution for optimal selection of cathode catalyst in MFCs.The morphology, crystalline structure, elemental composition and ORR activity of these three kinds of Fe–N/C catalysts were characterized. Their ORR activities were compared with commercial Pt/C catalyst.It demonstrates that this kind of Fe–N/SLG can be a type of promising highly efficient catalyst and could enhance ORR performance of MFCs.  相似文献   

3.
Fe−N−C catalysts with single-atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton-exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N-doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre-constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as-developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half-wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First-principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy-related catalysis.  相似文献   

4.
Herein, we highlight redox-inert Zn2+ in spinel-type oxide (ZnXNi1−XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen-evolving condition, the newly formed VZn−O−Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N-doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm−2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high-rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1−XCo2O4 oxides after the OER test.  相似文献   

5.
Exploring high-performance non-precious-metal electrocatalysts for the oxygen reduction reaction (ORR) is critical. Herein, a scalable and cost-effective strategy is reported for the construction of one-dimensional carbon nanofiber architectures with simultaneous decoration of single Fe−Nx sites and highly dispersed Fe/Fe3C nanoparticles for efficient ORR, through the FeIII-complex-assisted electrospinning of gelatin nanofibers with subsequent pre-oxidation and carbonization. Results show that the presence of a FeIII complex enables the 1D gelatin nanofibers to be well retained during the pre-oxidation process. Owing to the distinct 1D nanofiber structure and the synergistic effect of Fe/Fe3C and Fe−Nx sites, the resulting electrocatalyst is highly active for ORR with a half-wave potential of 0.885 V (outperforming commercial Pt/C) and a superior electrochemical stability in alkaline electrolytes. Similarly, it also shows a high power density (144.7 mW cm−2) and a superior stability in Zn-air batteries. This work opens a path for the design and synthesis of 1D carbon electrocatalyst for efficient ORR catalysis.  相似文献   

6.
The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc–air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc–air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc–air battery based on this material exhibits an open-circuit voltage of 1.49 V, which is higher than that of conventional zinc–air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41 V). The assembled zinc–air battery delivered a peak power density of 168 mW cm−2 at a current density of about 200 mA cm−2, which is higher than that of an equivalent Pt/C cell (151 mW cm−2 at a current density of ca. 200 mA cm−2). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal–air batteries.  相似文献   

7.
The design of complex heterostructured electrode materials that deliver superior electrochemical performances to their individual counterparts has stimulated intensive research on configuring supercapacitors with high energy and power densities. Herein we fabricate hierarchical tectorum‐like α‐Fe2O3/polypyrrole (PPy) nanoarrays (T‐Fe2O3/PPy NAs). The 3D, and interconnected T‐Fe2O3/PPy NAs are successfully grown on conductive carbon cloth through an easy self‐sacrificing template and in situ vapor‐phase polymerization route under mild conditions. The electrode made of the T‐Fe2O3/PPy NAs exhibits a high areal capacitance of 382.4 mF cm−2 at a current density of 0.5 mA cm−2 and excellent reversibility. The solid‐state asymmetric supercapacitor consisting of T‐Fe2O3/PPy NAs and MnO2 electrodes achieves a high energy density of 0.22 mWh cm−3 at a power density of 165.6 mW cm−3.  相似文献   

8.
Nonprecious-metal-based electrocatalysts with low cost, high activity, and stability are considered as one of the most promising alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR). Herein, an economical and easy-to-fabricate catalyst is developed, that is, Fe/Fe3C embedded in N-doped hollow carbon spheres (Fe/Fe3C/NHCS), which gave the half-wave potential of 0.84 V in 0.1 m KOH, similar to the commercial Pt/C catalyst. Surprisingly, the favorable ORR performance of the as-prepared catalyst was obtained in both acidic and neutral conditions with almost a four-electron pathway and low H2O2 yield, which desirable the development of the proton exchange membrane (PEM) and microbial electrolysis cell (MEC) technology. Additionally, the obtained catalyst demonstrated better long-term stability and high methanol tolerance over a wide range of pH. These features could be mainly attributed to the synergistic effect between Fe/Fe3C and Fe-Nx sites, the hollow structure with mesopores, and the well-dispersed Fe/Fe3C nanoparticles owing to the existence of the abundant hydrophilic groups within the HCS precursor. As such, designing an efficient and cheap ORR catalyst that can operate at alkaline, acidic, and neutral solutions is highly desirable, yet challenging.  相似文献   

9.
The design and synthesis of metal-free catalysts with superior electrocatalytic activity, high durability, low cost, and under mild conditions is extremely desirable but remains challenging. To address this problem, a polymer-assisted electrochemical exfoliation technique of graphite in the presence of an aqueous acidic medium is reported. This simple, cost-effective, and mass-scale production approach could open the possibility for the synthesis of high-quality nitrogen-doped graphene–polypyrrole (NG-PPy). The NG-PPy catalyst displays an improved half wave potential (E1/2=0.77 V) in alkaline medium compared with G-PPy (E1/2=0.66 V). Most importantly, this catalyst demonstrates excellent stability with high methanol tolerance, and it outperforms the commercial Pt/C catalyst and other previously reported metal-free catalysts. The content of graphitic nitrogen atoms is the key factor for the enhancement of electrocatalytic activity towards oxygen reduction reactions (ORR). Interestingly, the NG-PPy catalyst can be used as a cathode material in a zinc–air battery, which demonstrates a higher peak power density (59 mW cm−2) than G-PPy (36.6 mW cm−2), highlighting the importance of the low-cost material synthesis approach towards the development of metal-free efficient ORR catalysts for fuel cell and metal–air battery applications. Remarkably, the polymer-assisted electrophoretic exfoliation of graphite with a high yield (≈88 wt %) of few-layer graphene flakes could pave the way towards the mass production of high-quality graphene for a variety of applications.  相似文献   

10.
Sustained signal activation by hydroxyl radicals (⋅OH) has great significance, especially for tumor treatment, but remains challenging. Here, a built-in electric field (BIEF)-driven strategy was proposed for sustainable generation of ⋅OH, thereby achieving long-lasting chemodynamic therapy (LCDT). As a proof of concept, a novel Janus-like Fe@Fe3O4−Cu2O heterogeneous catalyst was designed and synthesized, in which the BIEF induced the transfer of electrons in the Fe core to the surface, reducing ≡Cu2+ to ≡Cu+, thus achieving continuous Fenton-like reactions and ⋅OH release for over 18 h, which is approximately 12 times longer than that of Fe3O4−Cu2O and 72 times longer than that of Cu2O nanoparticles. In vitro and in vivo antitumor results indicated that sustained ⋅OH levels led to persistent extracellular regulated protein kinases (ERK) signal activation and irreparable oxidative damage to tumor cells, which promoted irreversible tumor apoptosis. Importantly, this strategy provides ideas for developing long-acting nanoplatforms for various applications.  相似文献   

11.
Targeted construction of carbon defects near the N dopants is an intriguing but challenging way to boost the electrocatalytic activity of N-doped carbon toward oxygen reduction reaction (ORR). Here, we report a novel site-specific etching strategy that features targeted anchoring of singlet oxygen (1O2) on the N-adjacent atoms to directionally construct topological carbon defects neighboring the N dopants in N-doped carbon (1O2−N/C). This 1O2−N/C exhibits the highest ORR half-wave potential of 0.915 VRHE among all the reported metal-free carbon catalysts. Pyridinic-N bonded with a carbon pentagon of the neighboring topological carbon defects is identified as the primary active configuration, rendering enhanced adsorption of O2, optimized adsorption energy of the ORR intermediates, and a significantly decreased total energy barrier for ORR. This 1O2-induced site-specific etching strategy is also applicable to different precursors, showing a tremendous potential for targeted construction of high-efficiency active sites in carbon-based materials.  相似文献   

12.
Here, a porous cobalt–organic framework with pillared layer structures, namely [Co3OBA3PTD(H2O)2 ⋅ 2 DMA ⋅ H2O]n ( 1 , H2OBA=4,4′-oxybis(benzoic acid); PTD=6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine), was fabricated by using cobalt trinuclear nodes, low-cost carboxylic linker, and accessible nitrogen heterocyclic ligands. This compound exhibited a highly efficient solvatochromism towards CH2Cl2 within one minute and can be used 200 times at least. The corresponding dropper detector was assembled as a practical sensor. Meanwhile, the porous Co3O4 was obtained by a simple but effective annealing treatment. Electrochemical measurements confirm that this Co3O4 material derived from compound 1 shows high and stable lithium storage capabilities (1081.75 mA h g−1 at 200 mA g−1 after 115 cycles) and excellent rate properties.  相似文献   

13.
Photocatalytic oxygen reduction reaction (ORR) offers a promising hydrogen peroxide (H2O2) synthetic strategy, especially the one-step two-electron (2e) ORR route holds great potential in achieving highly efficient and selectivity. However, efficient one-step 2e ORR is rarely harvested and the underlying mechanism for regulating the ORR pathways remains greatly obscure. Here, by loading sulfone units into covalent organic frameworks (FS-COFs), we present an efficient photocatalyst for H2O2 generation via one-step 2e ORR from pure water and air. Under visible light irradiation, FS-COFs exert a superb H2O2 yield of 3904.2 μmol h−1 g−1, outperforming most reported metal-free catalysts under similar conditions. Experimental and theoretical investigation reveals that the sulfone units accelerate the separation of photoinduced electron-hole (e-h+) pairs, enhance the protonation of COFs, and promote O2 adsorption in the Yeager-type, which jointly alters the reaction process from two-step 2e ORR to the one-step one, thereby achieving efficient H2O2 generation with high selectivity.  相似文献   

14.
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e-pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e-pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx/carbon nanotube hybrids, a construction-driven approach based on an extended “dynamic active site saturation” model that aims to create the maximum number of 2 e ORR sites by directing the secondary ORR electron transfer towards the 2 e intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics.  相似文献   

15.
Electrodes for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are required in energy conversion and storage technologies. An assembly strategy involves covalently grafting Co corrole 1 onto Fe3O4 nanoarrays grown on Ti mesh. The resulted electrode shows significantly improved activity and durability for OER and ORR in neutral media as compared to Fe3O4 alone and with directly adsorbed 1 . It also displays higher atom efficiency (at least two magnitudes larger turnover frequency) than reported electrodes. Using this electrode in a neutral Zn‐air battery, a small charge–discharge voltage gap of 1.19 V, large peak power density of 90.4 mW cm?2, and high rechargeable stability for >100 h are achieved, opening a promising avenue of molecular electrocatalysis in a metal–air battery. This work shows a molecule‐engineered electrode for electrocatalysis and demonstrates their potential applications in energy conversion and storage.  相似文献   

16.
Niobate nanosheets have aroused widespread interest in recent years for their prospects in catalysis. The exploration of 2D niobate catalysis with stable and efficient properties is still the focus in chemistry and materials science. Herein, the successful fabrication of 2D CdS/Au/HNb3O8 catalyst is demonstrated which revealed efficient photocatalytic properties in H2 evolution, oxidative self-coupling of amines to imines, and degradation of dyes. Especially the assembled architecture can give a rate of 5.85 mmol ⋅ g−1 ⋅ h−1 of photocatalytic H2 evolution, an ∼254-fold enhancement, compared with bare HNb3O8 nanosheets under identical conditions. In accordance with density functional theory (DFT) and X-ray adsorption fine structure (XAFS) analyses, the vast improvements are benefited from efficient migration and separation of charge carriers. Besides, the surface plasma resonance (SPR) effect of Au NPs enhances the light harvesting capacity and boosts the generation of hot electrons, efficiently improving the visible-light absorption.  相似文献   

17.
The exploration of inexpensive and efficient catalysts for oxygen reduction reaction (ORR) is crucial for chemical and energy industries. Carbon materials have been proved promising with different catalysts enabling 2 and 4e ORR. Nevertheless, their ORR activity and selectivity is still complex and under debate in many cases. Many structures of these active carbon materials are also chemically unstable for practical implementations. Unlike the well-discussed structures, this work presents a strategy to promote efficient and stable 2e ORR of carbon materials through the synergistic effect of lattice distortion and H-passivation (on the distorted structure). We show how these structures can be formed on carbon cloth, and how the reproducible chemical adsorption can be realized on these structures for efficient and stable H2O2 production. The work here gives not only new understandings on the 2e ORR catalysis, but also the robust catalyst which can be directly used in industry.  相似文献   

18.
Self-supported 3-dimensional (3D) nitrogen-doped bimodal-pore structured carbon fiber aerogel is synthesized via a facile carbonization process using prawn shells as the raw material. The fabricated N-doped carbon fiber aerogel possesses micro- and meso-porous pores with an N doping level of 5.9% and a high surface area of 526 m2 g 1. As an electrocatalyst, the resultant N-doped carbon fiber aerogel exhibits superior electrocatalytic activity towards oxygen reduction reaction (ORR) with a more positive ORR onset-potential, better stability and high resistance to crossover effect compared to the commercial Pt/C electrocatalyst.  相似文献   

19.
The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1-N4) transforms to O*-(Se1-C2) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm−2 in Zn-air battery.  相似文献   

20.
Late transition metal-bonded atomic oxygen radicals (LTM−O⋅) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM−O⋅-mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM−O⋅ radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3O10 and FeV5O15 featuring with Fe−O⋅ radicals to abstract a hydrogen atom from C2−C4 alkanes has been experimentally characterized at 298 K, and the rate constants are determined in the orders of magnitude of 10−14 to 10−16 cm3 molecule−1 s−1, which are four orders of magnitude slower than the values of counterpart ScV3O10 and ScV5O15 clusters bearing Sc−O⋅ radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe−O⋅. This study not only quantitatively characterizes the elementary reactions of LTM−O⋅ radicals with alkanes, but also provides new insights into structure-activity relationship of M−O⋅ radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号