首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To transform tall goldenrods, which are invasive alien plant that destroy the ecosystem of South Korea, into useful materials, cellulose fibers isolated from tall goldenrods are applied as EMI shielding materials in this study. The obtained cellulose fibers were blended with CNTs, which were used as additives, to improve the electrical conductivity. TGCF/CNT papers prepared using a facile paper manufacturing process with various weight percent ratios and thickness were carbonized at high temperatures and investigated as EMI shielding materials. The increase in the carbonization temperature, thickness, and CNT content enhanced the electrical conductivity and EMI SE of TGCF/CNT carbon papers. TGCF/CNT-15 papers, with approximately 4.5 mm of thickness, carbonized at 1300 °C exhibited the highest electrical conductivity of 6.35 S cm−1, indicating an EMI SE of approximately 62 dB at 1.6 GHz of the low frequency band. Additionally, the obtained TGCF/CNT carbon papers were flexible and could be bent and wound without breaking.  相似文献   

2.
In this study, carbon nanotubes (CNTs) were first modified using N,N′‐ dicyclohexylcarbodiimide (DCC) dehydrating agents. Subsequently, the poly(butylene succinate)/multiwalled carbon nanotube (PBS/MWNTs) nanocomposites were prepared through facile melt blending. Thermal degradation of these PBS/MWNT nanocomposites was investigated; the kinetic parameters of degradation were calculated using the Coats and Redfern, Ozawa, and Horowitz and Metzger methods, respectively. It was found that the degradation reaction mechanism of PBS and the CNT‐C18 containing nanocomposites at lower temperature was likely to produce an F1 model through reaction of random chain cleavage (cis‐elimination). However, the reaction mechanism at higher temperature was likely to be a D1 model because of the dominant diffusion control effect. Moreover, it was found that the activation energies of CNT‐C18‐containing PBS nanocomposites were first increased with the content of CNT‐C18, but then decreased after the content was larger than 0.5 wt % for all models at differing heating rates. This may be due to the formation of a conductive network of CNTs in the polymer matrix at higher content of CNTs, which lead to better heat and electrical conductivity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1231–1239, 2009  相似文献   

3.
Summary: We carried out a systematic study of the electrical properties of carbon nanotube-based polymeric composite materials. Our purpose was the production and characterization of a light, thin and mechanically strong new composite material able to cover electric circuits against external electromagnetic interference. As polymeric matrix we used a commercial Shell product Epon 828 epoxy resin. Two types of curing agent were used along with the resin, namely A1 and PAP8 agent: the composite was obtained using the A1 curing agent, selected for the stability of the corresponding material over a wide range of pressure values. Setting the resistivity properties of carbon nanotube-based composites against those containing micro-sized graphite particles as constituent we showed the advantages of using carbon nanotubes. The change in the resistivity values for carbon nanotubes-based composites turned out to be significant, even for small changes in the added carbon nanotubes percentage. We also plan to show the composite's behavior in controlled humidity environments and for different temperatures. These results might be important for determining the most suitable “recipe” for the realization of composite materials useful to high-fidelity circuits applications, or even in devices exposed to predominantly electromagnetic noise.  相似文献   

4.
通过共挤出包覆-热压法制备了具有隔离结构的聚丙烯(PP)/碳纳米管(CNTs)电磁屏蔽复合材料。 其中,CNTs随机分布于PP基体中形成导电相,该导电复合物作为包覆层包敷在纯PP颗粒表面,形成包覆复合粒子,经热压后形成隔离导电网络。 结果表明,所制备的隔离结构复合材料呈现良好的导电性能,可获得较低的导电逾渗值0.28%(体积分数);在CNTs质量分数为5.6%时,该复合材料电磁屏蔽性能达到25.6 dB,同时具有良好的力学性能。 本文结果表明,共挤出包覆-热压法制备隔离结构导电复合材料方法简单可控、绿色环保,对开发高性能电磁屏蔽复合材料具有重要指导意义。  相似文献   

5.
As a critical action plan formulated for peaking carbon dioxide emissions, polymeric electromagnetic interference (EMI) shielding materials based on CO2 foaming technology have recently been attracting widespread attention in both research and industry, attributable to their efficient use of CO2, high specific strength, corrosion resistance and low-cost characteristics. In the past decade, the emergence of novel design concepts and preparation techniques for CO2 foaming technology has led to the development of new high-performance EMI shielding materials in this field. This review summarizes the research progress made to date on the fabrication of EMI shielding composite foams by supercritical carbon dioxide (scCO2) foaming. We also explore the structure-activity relationships between the component/distribution and EMI shielding properties. Additionally, the application prospects and development challenges of new EMI shielding composite foams are described.  相似文献   

6.
A new poly(butylene succinate) (PBS)‐grafted vapor grown carbon fiber (VGCF)/poly(L ‐lactide) (PLLA) nanocomposites were successfully prepared by an in situ condensation reaction between PBS (Mw = 6,000) and surface oxidized VGCF, followed by direct melt mixing technique, and their mechanical and thermal properties were evaluated. Fourier transform infrared spectroscopy and scanning electron microscopy studies indicate a chemical interaction between the PBS and the surface of VGCF. It was found that the maximum tensile strength and modulus of PBS‐grafted VGCF/PLLA nanocomposites were 135 MPa (27% increase relative to neat PLLA) and 4,400 MPa (29% increase relative to neat PLLA), respectively. The results indicate that significant improvement in the mechanical properties can be accomplished by optimizing the surface modification conditions for VGCF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4433–4441, 2008  相似文献   

7.
We here report a facile method to fabricate a sponge‐supported reduced graphene oxide aerogel (S‐RGOA) using a commercial melamine sponge and graphene oxide (GO). Firstly, GO sheets were self‐assembled within the melamine sponge by the assistance of a chemical cross‐linking agent; and then, freeze‐drying and thermal treatment were adopted to prepare S‐RGOA, in which continuous porous reduced graphene oxide (RGO) network formed between the skeleton. The resulting S‐RGOA exhibited a high electromagnetic interference shielding effectiveness (EMI SE) of 20.4‐27.3 dB in 8–12 GHz and the specific EMI SE could reach 1437 dB?cm3g?1. The mechanical test suggests that the lightweight S‐RGOA is compressible and possesses low energy dissipation. Burning and TGA measurements indicate that S‐RGOA is fire‐resistant and has excellent thermal stability. Our work provides an economical and environmentally‐friendly method to fabricate RGO aerogels for using as electromagnetic interference materials.  相似文献   

8.
New polyesters incorporating a variable quantity of imidazolium rings along the backbone are synthesized by Huisgen 1,3‐dipolar cycloaddition (“click” reaction). Subsequently, the imidazolium‐grafted copolymers reveal an efficient dispersing ability toward the carbon nanotubes (CNTs) through supramolecular interactions in organic media. Interestingly, these compounds offer a simple and reliable strategy to control the quantity of dispersed CNTs as a function of imidazolium content. This approach is particularly suitable for the elaboration of biosourced and biodegradable materials based on poly(butylene succinate) with high‐performance properties.  相似文献   

9.
Summary: A rapid and eco‐friendly synthesis of poly(butylene succinate) (PBS) using microwaves was developed in the presence of 1,3‐dichloro‐1,1,3,3‐tetrabutyldistannoxane as catalyst. To determine the optimum conditions, the effect of catalyst concentration, bulk vs. solution polymerization, reaction time, temperature, and stoichiometry of the monomers were studied. Based on the optimum conditions, PBS with a weight‐average molecular weight of 2.35 × 104 was obtained in a short time of 20 min.

Synthesis of poly(butylene succinate) under microwave irradiation.  相似文献   


10.
热塑性淀粉/PBS共混物的微生物降解性研究   总被引:2,自引:0,他引:2  
以甘油作为增塑剂,采用玉米淀粉与改性后的聚丁二酸丁二醇酯(PBS)熔融共混制备出淀粉/PBS共混材料.对这种改善了两相相容性的共混材料在特定微生物条件下的降解行为进行了研究.结果显示,共混物降解28天后,含有30%PBS的共混物质量损失达到35%左右,其力学性能只有降解前的20%,甘油含量减小和PBS含量增加均能减缓材料的降解.且随着降解时间的延长,PBS的结晶度和熔点有所提高.  相似文献   

11.
聚丁二酸丁二醇酯在堆肥条件下的生物降解性能研究   总被引:6,自引:1,他引:6  
根据ISO 14855的检测方法,研究了聚丁二酸丁二醇酯(PBS)在堆肥条件下的生物降解性能,结果 表明PBS具有良好的生物降解性,且其形态对其降解速率有显著的影响,降解速率:PBS粉末>PBS片>PBS 颗粒。对堆肥中的微生物进行分离鉴定,在所选堆肥中主要分离出四种菌株:杂色曲霉菌、青霉菌、芽包杆菌 和直杆高温多孢菌,它们对PBS的降解能力各不相同,其中最有效降解PBS的菌株是杂色曲霉菌。  相似文献   

12.
李静  曹丽琴  王吉德 《应用化学》2011,28(5):516-520
在超临界二氧化碳(scCO2)条件下,制备了可生物降解性的聚(丁二酸-丁二醇/乙二醇)酯(PBES)多孔材料,研究了scCO2的压力、温度对多孔材料的结构形貌和结晶度的影响。 结果表明,材料的孔洞分布、结构形态和结晶度与处理样品的压力、温度关系密切;经过scCO2处理后材料的结晶度有所降低。 孔径均匀分布,为50~200 μm,131 ℃处理样品的孔隙率为55.63%。  相似文献   

13.
PBS基生物降解材料的研究进展   总被引:20,自引:0,他引:20  
PBS(聚丁二酸丁二醇酯 )是一种具有良好生物降解性的聚酯塑料。本文简述了PBS的基本特性、降解机理和制备方法 ,对各种PBS基生物降解材料的特性进行了分析 ,介绍了PBS基生物降解材料的研究进展  相似文献   

14.
利用静电纺丝法制备了聚丁二酸丁二醇酯(PBS)纳米纤维膜及PBS和富血小板血浆(PRP)的混合纳米纤维膜. 通过扫描电子显微镜、 3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)比色法、 支架表面细胞荧光染色法、 材料溶血行为及Elisa法检测体外释放综合评价了支架材料的性能及生物活性. 结果表明, 纳米纤维膜对人骨肉瘤细胞系MG63细胞增殖具有促进作用; 生长因子在最初的突释后, 随材料降解而缓释; 支架材料溶血率为0.1475%(<5%), 符合医用材料的溶血实验要求.  相似文献   

15.
In this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface. PVDF:PE 50:50 and 20:80 polymer blend nanocomposites with 2 vol% MWCNTs exhibit exceptional electromagnetic interference shielding effectiveness (EMI SE) at 10 min of mixing (13 and 16 dB, respectively-at a thickness of 0.45 mm), when compared to 30 s of mixing (11 and 12 dB, respectively), suggesting the formation of more interconnected MWCNT networks over time. TEM images show that these improved microstructures are concentrated on the PE side of the PVDF/PE interface. A modified version of the “Slim-Fast-Mechanism” is proposed to explain the migration behavior of MWCNTs within the PVDF/PE blend. In this theory, MWCNTs approaching perpendicular to the interface penetrate the PVDF/PE interface, while those approaching in parallel or as MWCNT agglomerates remain trapped. Trapped MWCNTs act as barriers to additional MWCNTs, regardless of geometry. This mechanism is verified via TEM and scanning electron microscopy and suggests the feasibility of localizing MWCNTs at the interface of PVDF/PE blends.  相似文献   

16.
Poly(butylene succinate) (PBS)/jute composites were prepared, and the effects of fibre content, diameter, surface modification and arrangement forms on the biodegradability were evaluated by compost-soil burial test. The weight losses of PBS/jute composites are higher than that of pure PBS film and bulk jute fibre, and decreased with increasing fibre content. The weight loss of PBS/10% jute composite after 180 days is 62.5%. In the case of the effect of fibre diameter, the weight loss is found to decrease with decreasing fibre diameter. For the effect of fibre surface modification, the order of higher weight loss is PBS/untreated jute > PBS/alkali treated jute > PBS/coupling agent treated jute. Furthermore, the composite of PBS/woven fabric has the highest weigh loss, followed by that of PBS/nonwoven fabric and PBS/bulk jute fibre, respectively.  相似文献   

17.
A facile approach to polymer nanocomposites with single‐wall carbon nanotubes and cationic polymers is reported. The composite material was synthesized by producing carboxylic acid groups at the nanotube termini followed by a reaction with poly(allylamine) in water. Fourier transform infrared spectral and thermogravimetric analyses corroborate that the poly(allylamine) chains were wrapped on the surface of the carbon nanotubes. The scanning electron microscopic (SEM) image shows that the nanotubes were dispersed with little aggregation, thus, strongly suggesting that the poly(allylamine) chains have covered the single‐wall carbon nanotubes, which was further evidenced by transmission electron microscopy. The composites are soluble in water, and this solubilization process opens up new opportunities in the solution chemistry on pristine nanotubes.

  相似文献   


18.
The rapid development of communication technology and electronic industry has brought unprecedented serious electromagnetic interference (EMI) and electromagnetic wave (EMW) pollution. Although EMI shields and EMW absorbers based on metal or magnetic materials were used to solve these problems, they have long been criticized for their high price, high density and easy corrosion. In order to achieve low density and efficient dissipation of electromagnetic energy, aerogels stand out among manifold materials. However, constructing aerogels with good EMI shielding or EMW absorption performance and acceptable mechanical properties is not an easy task. Burgeoning biopolymers, such as cellulose, lignin, chitin/chitosan and alginate, breathe new life into aerogels for high-efficiency EMW shielding and absorbing. Here, we reviewed the contributions of biopolymers in the fields of aerogels for EMW shielding and absorbing. At the same time, some challenges and outlook were also pointed out, aiming to promote the advance of aerogel-based EMI shields and EMW absorbers as well as the rational utilization of biopolymers.  相似文献   

19.
In this work, new investigations on the effect of comonomer sequential structure on the thermal and crystallization behaviors and biodegradability have been implemented for the biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST) as well as aliphatic poly(butylene succinate) (PBS). At first, these copolyesters were efficiently synthesized from dimethyl succinate and/or dimethyl terephthalate and 1,4‐butanediol via condensation polymerization in bulk. Subsequently, their molecular weights and macromolecular chain structures were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. By means of differential scanning calorimeter (DSC) and wide‐angle X‐ray diffractometer (WAXD), thermal and crystallization behaviors of these synthesized aromatic–aliphatic copolyesters were further explored. It was demonstrated that the synthesized copolyesters were revealed to have random comonomer sequential structures with thermal and crystallization properties strongly depending on their comonomer molar compositions, and that crystal lattice structures of the new crystallizable copolyesters shifted from the monoclinic crystal of semicrystalline PBS to triclinic lattice of the poly(butylene terephthalate) (PBT) with increasing the terephthalate comonomer composition, and the minor comonomer components were suggested to be trapped in the crystallizable component domains as defects. In addition, the enzymatic degradability was also characterized for the copolyesters film samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1635–1644, 2006  相似文献   

20.
本文研究了聚苯基膦酸二苯砜酯(PSPPP)对聚丁二酸丁二酯(PBS)的阻燃作用。研究发现,在PBS中仅添加4wt%的PSPPP,其垂直燃烧就可以达到UL-94 V-0级,极限氧指数达到34,PSPPP对PBS表现出高效阻燃作用。然而,PSPPP对PBS有促进降解的作用,破坏了PBS的力学性能。通过在PBS/PSPPP体系中添加0.5wt%氧化锌后,有效抑制了PBS的降解,力学性能得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号