首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compound marker consists of two different types of genetic markers, like deletion/insertion polymorphism and single nucleotide polymorphism in the genomic region of 200 bp, and microhaplotype consists of a series of closely linked single nucleotide polymorphisms in a small DNA segment (<300 bp), which show great potential for human identifications and mixture analyses. In this study, we initially selected 23 novel genetic markers comprising 10 microhaplotypes and 13 compound markers according to previously reported single nucleotide polymorphism or deletion/insertion polymorphism loci. Genetic distributions of these 23 loci in different continental populations showed that they could be used as valuable loci for forensic human identification purpose. Besides, high informativeness values (>0.1) were observed in six loci which could be further employed for forensic ancestry analyses. Finally, 18 loci were successfully developed into a multiplex panel and detected by the next generation sequencing (NGS) technology. Further analyses of these 18 loci in the studied Shaanxi Han population showed that 15 loci exhibited relatively high expected heterozygosities (>0.5). Cumulative power of discrimination (0.999 999 999 99 4835) of these 18 loci revealed that the multiplex panel could also be utilized for human identifications in the studied Shaanxi Han population.  相似文献   

2.
Microhaplotypes are a new promising type of forensic genetic marker. Without the interference of stutter and high mutation rates as for STRs, and with short amplification lengths and a higher degree of polymorphism than single SNP, microhaplotypes composed of two SNPs, SNP–SNP, have a strong application potential. Currently, the most common method to detect microhaplotypes is massive parallel sequencing. However, the cost and extensive use of instruments limit its wide application in forensic laboratories. In this study, we screened 23 new SNP–SNP loci and established a new detection method by combining a multiplex amplification refractory mutation system-based PCR (ARMS-PCR) and SNaPshot technology based on CE. First, we introduced an additional deliberate mismatch at the antepenultimate base from the 3′ end of primers when designing ARMS-PCR for SNP 1 (the first SNP of the SNP–SNP). Then, single base extension primers for SNaPshot assay were designed next to the position of SNP 2 (the second SNP). Finally, 15 loci were successfully built into four panels and these loci showed a relatively high level of polymorphism in the Southwest Chinese Han population. All the loci had an average probability of informative genotypes (I value) of 0.319 and a combined discrimination power of 0.999999999. Therefore, this new detection system will provide a valuable supplement to current methods.  相似文献   

3.
Insertion/deletion markers (InDels) become an important marker for forensic medicine because of their compatible typing techniques with STRs and lower mutation rates. Recent years, a new kind of DNA marker named Multi-InDel was reported as characterized by two or more tightly linked InDel loci within a short length of physical position, usually 200–300 nucleotides. Many pieces of research showed that Multi-InDels had excellent application values in ancestry inference and forensic medicine. Since the identical number of insertion/deletion nucleotides of the InDel markers that composing the Multi-InDel marker, the genotypes of most reported Multi-InDels could not be directly typed by capillary electrophoresis (CE) due to the lack of length discrepancy among the composing InDel sequence. In this study, we applied a typing system of 20 Multi-InDels including 41 InDels, whose genotypes could be deduced by CE and assessed their potential applications in forensic medicine. A total of 200 unrelated Chinese Han individuals and five mother-child-father trios with proven paternity with one STR locus transmission incompatibilities from Shanxi province were genotyped by the multiplex system. The results showed that a total of 70 specific alleles were observed, more than three alleles were observed in 19 loci and seven alleles were observed in one locus. The combined probability of exclusion and the combined power of discrimination were 0.992 and 0.99999999993, respectively. This study demonstrates their potential usefulness for individual identification and paternity tests. The development of Multi-InDels provided another genetic tool inherent in higher polymorphic and lower mutation rates.  相似文献   

4.
In this study, a small set of ancestry informative SNPs was selected to differentiate African, European, East and South Asian samples, which was detected by the next-generation sequencing technology. A total of 127 Chinese Shaanxi Han individuals were collected as test samples. No statistically significant linkage disequilibrium of any pair of loci or departure from Hardy–Weinberg equilibrium of each locus was observed in the test population. To evaluate the performance of ancestry assignment using this panel, admixture analysis, principal component analysis, and likelihood ratio calculations were conducted based on the 1000 genome data and test samples. All populations were clustered into four groups, African, European, South and East Asian populations, which were consistent with their geographical origins. The pairwise fixation index (FST) between populations from different continental groups ranged from 0.140 to 0.621 with average 0.415, and the pairwise FST between populations from the same continent ranged from 0.000 to 0.056 with average 0.012. The likelihood ratio results of 125 test individuals indicated that their ancestry components were highly possible from East Asia. In conclusion, this small set of ancestry informative SNPs can be used as a reliable tool to identify and quantify ancestry components of unknown samples.  相似文献   

5.
Massively parallel sequencing (MPS) technology allows to simultaneously type multitudinous molecular genetic markers for many samples in one run with the feature of high detection resolution, and thereby arouses the increasing attention from forensic science. Herein, multiple allelic single nucleotide polymorphisms (multi-allelic SNPs) were screened for personal identification and parentage testing, and then were genotyped using MPS platform. Unrelated individuals of Chinese Mongolian and Kazakh groups were investigated to further estimate forensic effectiveness and applicability of these multi-allelic SNPs. The results of sequencing efficiency estimations and forensic genetic statistical parameters demonstrated that this MPS panel of multi-allelic SNPs was expected to be work for forensic applications. Subsequently, the exploration of population genetic variation patterns among the two investigated groups and other 26 reference populations revealed that these Chinese Mongolian and Kazakh groups had the similar population genetic patterns with the populations from East Asian, but European ancestral composition in the Kazakh group was higher than that in the Mongolian group. Currently, the present results were the preliminary research to scrutinize genetic information of these two ethnic minority groups employing multi-allelic SNPs.  相似文献   

6.
《Electrophoresis》2018,39(16):2136-2143
Insertion/deletion polymorphisms (InDels), which possess the characteristics of low mutation rates and a short amplicon size, have been regarded as promising markers for forensic DNA analysis. InDels can be classified as bi‐allelic or multi‐allelic, depending on the number of alleles. Many studies have explored the use of bi‐allelic InDels in forensic applications, such as individual identification and ancestry inference. However, multi‐allelic InDels have received relatively little attention. In this study, InDels with 2–6 alleles and a minor allele frequency ≥0.01, in Chinese Southern Han (CHS), were retrieved from the 1000 Genomes Project Phase III. Based on the structural analysis of all retrieved InDels, 17 multi‐allelic markers with mononucleotide homopolymer structures were selected and combined in one multiplex PCR reaction system. Sensitivity, species specificity and applicability in forensic case work of the multiplex were analyzed. A total of 218 unrelated individuals from a Chinese Han population were genotyped. The combined discriminatory power (CDP), the combined match probability (CMP) and the cumulative probability of exclusion (CPE) were 0.9999999999609, 3.91E‐13 and 0.9956, respectively. The results demonstrated that this InDel multiplex panel was highly informative in the investigated population and most of the 26 populations of the 1000 Genomes Project. The data also suggested that multi‐allelic InDel markers with monomeric base pair expansions are useful for forensic applications.  相似文献   

7.
Biogeographical origin inferences of different populations can provide valuable clues in the forensic investigation by narrowing down the detection scope. However, much research mainly focuses on forensic ancestral origin analyses of major continental populations, which may provide limited information in forensic practice. To improve the ancestral resolution of East Asian populations, we systematically selected ancestry informative single-nucleotide polymorphisms (AISNPs) for differentiating Han, Dai, Japanese, and Kinh populations. In addition, we evaluated the performance of the selected AISNPs to differentiate these populations via multiple methods. Totally 116 AISNPs were selected from the genome-wide data to infer the population origins of these four populations. Results of principle component analysis and population genetic structure of these populations indicated that the selected 116 AISNPs could achieve ancestral resolution of most individuals. Furthermore, the machine learning model built by 116 AISNPs unveiled that most individuals from these four populations could be assigned to correct population origins. To sum up, the selected 116 SNPs could be available for ancestral origin predictions of Han, Dai, Japanese, and Kinh populations, which could provide valuable information for forensic research and genome-wide association study in East Asian populations to some extent.  相似文献   

8.
In forensic genetics, the use of ancestry informative single-nucleotide polymorphisms (AISNPs) panels can narrow the direction of the investigation by estimating an individual's biogeographic ancestry. However, distinguishing subgroups within continental regions requires more specific panels. In this study, we screened 19 AISNPs from the 1000 Genomes Project (1KG) based on their FST values to distinguish target populations in East Asia and obtained genotypes through SNaPshot. The 19 AISNPs could divide the global population of the 1KG into five clusters and could further divide the East Asian population into four clusters: Japanese, Han Chinese, Dai Chinese, and Kinh in Ho Chi Minh City of Vietnam. In summary, the 19-AISNP panel may serve as a useful and cost-effective tool for forensic ancestry inference in East Asian populations at a finer scale.  相似文献   

9.
Unbalanced and degraded mixtures (UDM) are frequently encountered during forensic DNA analysis. For example, forensic DNA units regularly encounter DNA mixture signal where the DNA signal from the alleged offender is masked or swamped by high quantities of DNA from the victim. Our previous data presented a new kind of DNA markers that composed of a deletion/insertion polymorphism (DIP) and a SNP and we termed this new kind of microhaplotypes DIP‐SNP (combination of DIP and SNP). Since such markers could be designed short enough for degraded DNA amplification, we hypothesized that DIP‐SNP markers are applicable for typing of UDM. In this study, we developed a new set of DIP‐SNPs with short amplicons which were complement to our prior developed system. The multiplex PCR and SNaPshot assay were established for 20 DIP‐SNPs in a Chinese Han population. The DIP‐SNPs were capable of detecting the minor contributor's allele in home‐made DNA mixture with sensitivities from 1:100 to 1:1000 with a total of 1 –10 ng input DNA. Moreover, this system successfully typed the degraded DNA whether it came from the single source or mixture samples. In Chinese population, the system showed an average informative value of 0.293 and combined informative value of 0.998363862. Our results demonstrated that DIP‐SNPs may serve as a valuable tool in detection of UDM in forensic medicine.  相似文献   

10.
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population‐divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12‐STR multiplex composed of ancestry informative marker STRs (AIM‐STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM‐SNPs: Snipper, to handle multiallele STR data using frequency‐based training sets. We assessed the ability of the 12‐plex AIM‐STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM‐SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available.  相似文献   

11.
Y-chromosome SNP haplogroups exhibit geographic structuring in many populations around the world. Therefore, Y-chromosome haplogroups have been widely used to infer paternal biogeographical ancestry and high-resolution paternal lineage classification. In the present study, we designed a customized panel containing 183 Y-SNPs based on previous studies and evaluated the genotyping performance and repeatability, concordance, sensitivity, and ability of analysing case-type samples using a MALDI-TOF MS platform. The average call rate for duplicate typing of any one SNP in the panel was 97.0%. In the concordance and accuracy study, the results of haplogroup designation obtained from MALDI-TOF MS platform were fully consistent with those obtained from the next-generation sequencing (NGS) platform. The optimal amount of template DNA in the PCR seemed to be 10 ng. However, if less DNA (≥156.25 pg) was available, it was still possible to obtain meaningful haplogroup information. For the application part, this panel could be applied for the detection of blood, semen, and buccal swabs samples. Particularly, blood stain on FTA card samples could be dissected by direct PCR amplification on the MALDI-TOF MS platform. Besides, 371 unrelated male individuals from four Chinese ethnic groups (Han, Hui, Mongolian, and Kazak) were detected using this panel. Total 78 terminal haplogroups were found and the haplogroup diversity was 0.933576. The results demonstrate that this panel could be an accurate, fast, and cost-effective method for database construction where the amount of sample material is less of a concern and when the cost of the assay is taken into consideration.  相似文献   

12.
Population stratification analyses targeting genetically closely related East Asians have revealed that distinguishable differentiation exists between Han Chinese, Korean, and Japanese individuals, as well as between southern (S-) and northern (N-) Han Chinese. Previous studies offer a number of choices for ancestry informative single nucleotide polymorphisms (AISNPs) to discriminate East-Asian populations. In this study, we collected and examined the efficiency of 1185 AISNPs using frequency and genotype data from various publicly available databases. With the aim to perform fine-scale classification of S-Han, N-Han, Korean, and Japanese subjects, machine-learning methods (Softmax and Random Forest) were used to screen a panel of highly informative AISNPs and to develop a superior classification model. Stepwise classification was implemented to increase and balance the discrimination in the process of AISNP selection, first discriminating Han, Korean, and Japanese individuals, and then characterizing stratification between S-Han and N-Han. The final 272-AISNP panel is an alternative optimization of various previous works, which promises reliable and >90% accuracy in classification of the four East-Asian groups. This AISNP panel and the machine-learning model could be a useful and superior choice in medical genome-wide association studies and in forensic investigations for unknown suspect identity.  相似文献   

13.
In the past two decades, Y chromosome data has been generated for human population genetic studies. These Y chromosome datasets were produced with various testing methods and markers, thus difficult to combine them for a comprehensive analysis. In this study, we combine four human Y chromosomal datasets of Han, Tibetan, Hui, and Li ethnic groups. The dataset contains 27 microsatellites and 137 single nucleotide polymorphisms these populations share in common. We assembled a single dataset containing 2439 individuals from 25 nationwide populations in China. A systematic analysis of genetic distance and clustering was performed. To determine the gene flow of the studied population with worldwide populations, we modeled the ancestry informative markers. The reference panel was regarded as a mixture of South Asian (SAS), East Asian (EAS), European (EUR), African (AFR), and American (AMR) populations from 1000 Genomes data of Y chromosome using nonlinear data-fitting. We then calculated the admixture proportion of these four studied populations with 26 worldwide populations. The results showed that the Han and Hui have great genetic affinity, and Hui is the most admixed ethnic group, with 61.53% EAS, 34.65% SAS, 1.91% AFR, 1.56% AMR, and 0.04% EUR ancestry component (the AMR is highly admixed and thus should be ignored). All the other three ethnic groups contained more than 97% EAS ancestry component. The Li is the least admixed population in this study. The combined dataset in this study is the largest of this kind reported to date and proposes reference population data for use in future paternal genetic studies and forensic genealogical identification.  相似文献   

14.
To investigate genetic diversity in Chinese populations, 706 unrelated male individuals from five ethnic groups (Han, Korean, Hui, Mongolian, and Tibetan, respectively) were analyzed with 17 Y‐chromosomal STRs. The haplotype diversity was 0.99985 in the combined data. A total of 675 distinct haplotypes were observed, of which 649 were unique. Y‐chromosome haplogroups in the five groups were also predicted with Y‐STR haplotypes. Genetic distance between the five studied ethnic groups and other published groups was analyzed by analysis of molecular variance and visualized in a multidimensional scaling plot. In conclusion, the 17 Y‐STR loci are highly polymorphic markers in the five groups and hence are very useful in forensic application, population genetics, and human evolution studies.  相似文献   

15.
CE is the primary methodology used in forensic DNA typing. Alleles of commonly used types of genetic markers could be separated and detected via CE based on dye color and migration time. Insertion/deletion (InDel) is an ideal genetic marker for forensic DNA analysis due to their abundance in the human genome, low mutation rate, availability of their allele types via CE, and elimination of stutter peaks. Moreover, InDels could be used as ancestry informative markers since allele frequencies of InDels is different among geographically separated populations. Several ancestry informative insertion/deletion panels have been established based on CE platform to achieve the intercontinental populations distinction. However, improvements to differentiate intracontinental populations is few. In this study, 21 InDels with fixation index (FST) > 0.15 were selected and assembled into one ancestry informative insertion/deletion panel. Using well-designed primers, those 21 InDels could be amplified successfully and genotyped on the CE platform accurately and completely. The panel showed a large FST distance distinction among the ten Asian populations. Using clustering analysis, ten Asian populations were classified into three subgroups: East Asian, Southeast Asian, and South Asian subgroups. To evaluate the panel's capability in ancestry inference, a validation experiment was undertaken with 319 individuals from four geographically separated populations in China. Four Chinese populations were classified into different ancestry subgroups and 81.8% test individuals’ ancestry could be inferred correctly. Our result showed that development of high ancestry informative InDels panel based on CE platform is a potential for individual ancestry inference among intracontinental populations.  相似文献   

16.
Zha L  Yun L  Chen P  Luo H  Yan J  Hou Y 《Electrophoresis》2012,33(5):841-848
Tri-allelic single nucleotide polymorphisms (SNPs) are potential forensic markers for DNA analysis. Currently, only a limited number of tri-allelic SNP loci have been proved to be fit for forensic application. In this study, we aimed to develop an effective method to select and genotype tri-allelic SNPs based on both Pyrosequencing (PSQ) and the SNaPshot methods. 50 candidate SNPs were chosen from NCBI's dbSNP database and were analyzed by PSQ. The results revealed that 20 SNPs were tri-allelic and were located on 16 autosomal chromosomes. Then 20 SNP loci were combined in one multiplex polymerase chain reaction to develop a single base extension (SBE)-based SNP-typing assay. A total of 100 unrelated Chinese individuals were genotyped by this assay and allele frequencies were estimated. The total discrimination power was 0.999999999975 and the cumulative probability of exclusion was 0.9937. These data demonstrated that the strategy is a rapid and effective method for seeking and typing tri-allelic SNPs. In addition, the 20 tri-allelic SNP multiplex typing assay may be used to supplement paternity testing and human identification.  相似文献   

17.
Lou C  Cong B  Li S  Fu L  Zhang X  Feng T  Su S  Ma C  Yu F  Ye J  Pei L 《Electrophoresis》2011,32(3-4):368-378
Single nucleotide polymorphisms (SNPs), which have relatively low mutation rates and can be genotyped after PCR with shorter amplicons compared with short tandem repeats (STRs), are being considered as potentially useful markers in forensic DNA analysis. Those SNPs with high heterozygosity and low Fst (F-statistics) in human populations are described as individual identification SNPs, which perform the same function as STRs used in forensic routine work. In the present study, we developed a multiplex typing method for analyzing 44 selected individual identification SNPs simultaneously by using multiplex PCR reaction in association with fluorescent labeled single base extension (SBE) technique. PCR primers were designed and the lengths of the amplicons ranged from 69 to 125?bp. The population genetics data of 79 unrelated Chinese individuals for the 44 SNP loci were investigated and a series of experiments were performed to validate the characteristic of the SNP multiplex typing assay, such as sensitivity, species specificity and the performance in paternity testing and analysis of highly degraded samples. The results showed that the 44-SNPs multiplex typing assay could be applied in forensic routine work and provide supplementary data when STRs analysis was partial or failed.  相似文献   

18.
DNA-based ancestry inference has long been a research hot spot in forensic science. The differentiation of Han Chinese population, such as the northern-to-southern substructure, would benefit forensic practice. In the present study, we enrolled participants from northern and southern China, each participant was genotyped at ∼400 K single-nucleotide polymorphisms (SNPs) and data of CHB and CHS from 1000 Genomes Project were used to perform genome-wide association analyses. Meanwhile, a new method combining genome-wide association study (GWAS) analyses with k-fold cross-validation in a small sample size was introduced. As a result, one SNP rs17822931 emerged with a p-value of 7.51E − 6. We also simulated a huge dataset to verify whether k-fold cross-validation could reduce the false-negative rate of GWAS. The identified ABCC11 rs17822931 has been reported to have allele frequencies varied with the geographical gradient distribution in humans. We also found a great difference in the allele frequency distributions of rs17822931 among five different cohorts of the Chinese population. In conclusion, our study demonstrated that even small-scale GWAS can also have potential to identify effective loci with implemented k-fold cross-validation method and shed light on the potential maker of rs17822931 in differentiating the north-to-south substructure of the Han Chinese population.  相似文献   

19.
In the forensic field, ancestry‐informative markers (AIMs) showing remarkable allele frequency discrepancies can be useful in deducing the likely ancestral origin of a person or estimating the ancestry component proportions of an admixed population or individual. Diallelic single nucleotide polymorphisms are genetic markers commonly used for ancestry inference, but the genotyping methods of single nucleotide polymorphisms fail to fulfil the demands of cost‐effectiveness and simplicity of experimental manipulation. To overcome the limitations, a 39 ancestry‐informative insertion/deletion polymorphism multiplex panel was developed in the present study to perform ancestry assignment of individuals from three distinct biogeographic regions (Africa, Europe, East Asia). And in the panel design, we also attempted to incorporate AIM‐insertion/deletion polymorphisms exhibiting allelic frequency differences in Han, Uyghur, and Tibetan populations into the multiplex assay, further expecting to provide valuable information for refining ancestry inference within Chinese populations. Statistical analyses were performed to estimate efficiency of this panel in clustering individuals from three continents mentioned above into their corresponding populations, which indicated the potential of the panel in ancestry inference. Besides, we also estimated the ancestral component proportions of Uyghur group and STRUCTURE analysis revealed that Uyghurs from Urumchi city of northern Xinjiang exhibited a distinctly admixed pattern of East Asian and European ancestry components with a ratio of 49:44, reflecting the relatively higher East Asian ancestry component contribution in the gene pool of the Uyghur group.  相似文献   

20.
This study developed a new multiplex PCR system that simultaneously amplifies 16 X‐STR loci in the same PCR reaction, and the polymorphism and mutation rates of these 16 X‐STR loci were explored in a Shanghai Han population from China. These loci included DXS10134, DXS10159, DXS6789, DXS6795, DXS6800, DXS6803, DXS6807, DXS6810, DXS7132, DXS7424, DXS8378, DXS9902, GATA165B12, GATA172D05, GATA31E08, and HPRTB. Samples from 591 unrelated individuals (293 males and 298 females) and 400 two‐generation families were successfully analyzed using this multiplex system. Allele frequencies and mutation rates of the 16 loci were investigated, with the comparison of allele frequency distributions among different populations performed. Polymorphism information contents of these loci were all >0.6440 except the locus DXS6800 (0.4706). Nine cases of mutations were detected in the 16 loci from the investigation of 9232 meioses. Pairwise comparisons of allele frequency distributions showed significant differences for most loci among populations from different countries and ethnic groups but not among the Han population living in other areas of China. These results suggest that the 16 X‐STR loci system provides highly informative polymorphic data for paternity testing and forensic identification in the Han population in Shanghai, China, as a complementary tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号