首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Ganzera M 《Electrophoresis》2008,29(17):3489-3503
Herbal preparations, particularly those from traditional Chinese or Indian medicine, are becoming increasingly popular in Europe and the USA. Their application is often based on long-term historic use rather than on scientific evidences; thus, analytical tools to assure their efficacy, safety and consistency are in great demand. This review evaluates the importance of CE for quality control of herbal medicinal products during the last five years. After briefly describing the general characteristics of natural products analysis by CE, numerous applications on medicinal plants or herbal products are summarized. These examples not only reflect the enormous variability of CE with respect to buffer systems and detection modes employed, but also indicate an increasing importance of this separation technique for quality control purposes compared with more established ones such as HPLC.  相似文献   

2.
A great deal of research has been carried out in recent years on developing high-efficiency capillary electrophoresis (CE) techniques that are able to separate rapidly and selectively ionic platinum metal species in a wide variety of their complexed forms. Using a range of illustrative examples, this review examines the potential and utilization of various CE separation approaches and detection modes in this expanding area. Also covered are CE procedures suitable for solving practical analytical problems and for platinum metal speciation purposes. Presenting a comprehensive treatise on the evolving practices of CE concerning platinum anticancer drugs--in particular, the examination of the stability of intact drugs, the separation and identification of products of their metabolism and interactions with biomolecules (including kinetic studies of the binding behavior)--this paper witnesses a welcome shift of the main research activities to those performed under physiological conditions.  相似文献   

3.
The gram-negative bacterium Campylobacter jejuni has a general N-linked glycosylation pathway encoded by the pgl gene cluster. One of the proteins in this cluster, PglB, is thought to be the oligosaccharyl transferase due to its significant homology to Stt3p, a subunit of the yeast oligosaccharyl transferase complex. PglB has been shown to be involved in catalyzing the transfer of an undecaprenyl-linked heptasaccharide to the asparagine side chain of proteins at the Asn-X-Ser/Thr motif. Using a synthetic disaccharide glycan donor (GalNAc-α1,3-bacillosamine-pyrophosphate-undecaprenyl) and a peptide acceptor substrate (KDFNVSKA), we can observe the oligosaccharyl transferase activity of PglB in vitro. Furthermore, the preparation of additional undecaprenyl-linked glycan variants reveals the ability of PglB to transfer a wide variety of saccharides. With the demonstration of PglB activity in vitro, fundamental questions surrounding the mechanism of N-linked glycosylation can now be addressed.  相似文献   

4.
张琪 《色谱》2020,38(9):1028-1037
在现代分离科学中,手性化合物的分离分析一直是研究的重点和难点。相比于高效液相色谱(HPLC)、气相色谱(GC)等传统色谱分析方法,毛细管电泳(CE)技术凭借其高效率、低消耗、分离模式多样化等诸多优势,已经发展成为手性分离研究领域最有应用前景的分析方法之一。近年来,研究人员在CE手性分析方法的构建过程中,基于毛细管电动色谱(EKC)、配体交换毛细管电泳(LECE)、毛细管电色谱(CEC)等各种基础电泳模式,不断地对传统手性分离体系进行优化和改造,构建出了许多高性能的新型手性CE分离体系。如利用各类功能化离子液体以"手性离子液体协同拆分""手性离子液体配体交换""离子液体手性选择剂"等模式设计出多种基于离子液体的CE手性分离体系;利用纳米材料独特的尺寸效应、多样性、可设计性等特点,直接或与传统手性选择剂有机结合构建CE手性分离体系。此外,金属有机骨架材料修饰、低共熔溶剂修饰、非连续分段式部分填充等各式新颖的CE手性分离体系也都被研究人员成功开发,并表现出较大的发展潜力。该综述将对近年来(尤其是2015~2019年)此类新型CE手性分离体系的发展状况进行梳理,并结合相应的手性识别机理研究和手性CE方法实际应用情况,对该领域存在的问题及发展前景进行分析和展望。  相似文献   

5.
高效毛细管电泳在食品安全检测中的应用进展   总被引:1,自引:0,他引:1  
董亚蕾  陈晓姣  胡敬  陈兴国 《色谱》2012,30(11):1117-1126
近年来,食品安全问题频发,对人们的健康和社会发展造成了严重的危害,食品安全已成为人们关注的焦点问题之一。食品成分的复杂性、多样性对食品分析技术和方法提出了很高的要求。毛细管电泳(CE)由于分离模式多、分离效率高、分析速度快、试剂和样品用量少、对环境污染小等优点,在食品安全分析方面的应用日趋广泛。本综述对2009年以来CE在食品中非食用添加剂、农药残留、兽药残留、重金属离子污染、食品毒素以及食品包装材料中双酚A和塑化剂的检测方面的应用进行了总结,并对毛细管电泳在食品安全检测领域的主要发展方向进行了展望。共收录文献63篇。  相似文献   

6.
Capillary electrophoresis (CE) has a significant role in drug discovery and manufacturing processes and has a potential to grow further, due to new developments that can provide highly sensitive and high throughput analysis. This review illustrates recent applications of CE in pharmaceutical analysis (2005-present). The history, principles, instruments, and conventional modes of CE are briefly described. Applications for drug analysis by various techniques of CE are presented in six tables: capillary zone electrophoresis (CZE) (Table I), micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) (Table II), non-aqueous CE (NACE) (Table III), chiral CE (Table IV), CE-mass spectrometry (MS) microchip CE (Table V), and multiplexed CE (MCE) (Table VI).  相似文献   

7.
Oligosaccharides in therapeutic recombinant antibodies play important roles in regulation of various biological functions. To monitor the glycosylation profiles of antibody pharmaceuticals in the manufacturing process, a highly sensitive and specific method is required. We extended partial-filling techniques using lectins and exoglycosidases in capillary electrophoresis for the characterization of 8-aminopylene-1,3,6-trisulfonic acid labeled N-linked oligosaccharides derived from the therapeutic antibody rituximab. In the lectin-filling method, Galb1–4GlcNAc-specific Erythrina cristagali agglutinin, a1, 6-linked Fuc-specific Aleuria aurantia lectin and Neu5Aca2–3Gal-specific Maackia amurensis lectin were used. The oligosaccharides migrated through the lectin plug during separation; the changes in separation profiles were observed according to the interaction with the lectins. The glycosidase-filling method allowed rapid digestion as suggested by the electropherograms. Partial-filling CE methods can avoid tedious hands-on procedures such as overnight incubation and optimization reaction condition with lectins and exoglycosidases. Combination of these partial-filling capillary electrophoresis methods makes the characterization of oligosaccharide profiles of therapeutic antibodies easier and faster.  相似文献   

8.
Ivanov MR  Haes AJ 《The Analyst》2011,136(1):54-63
Tailored surface chemistry impacts nanomaterial function and stability in applications including in various capillary electrophoresis (CE) modes. Although colloidal nanoparticles were first integrated as colouring agents in artwork and pottery over 2000 years ago, recent developments in nanoparticle synthesis and surface modification increased their usefulness and incorporation in separation science. For instance, precise control of surface chemistry is critically important in modulating nanoparticle functionality and stability in dynamic environments. Herein, recent developments in nanomaterial pseudostationary and stationary phases will be summarized. First, nanomaterial core and surface chemistry compositions will be classified. Next, characterization methods will be described and related to nanomaterial function in various CE modes. Third, methods and implications of nanomaterial incorporation into CE will be discussed. Finally, nanoparticle-specific mechanisms likely involved in CE will be related to nanomaterial surface chemistry. Better understanding of surface chemistry will improve nanoparticle design for the integration into separation techniques.  相似文献   

9.
This review covers recent advances of capillary electrophoresis (CE) in pharmaceutical analysis. The principle, instrumentation, and conventional modes of CE are briefly discussed. Advances in the different CE techniques (non-aqueous CE, microemulsion electrokinetic chromatography, capillary isotachophoresis, capillary electrochromatography, and immunoaffinity CE), detection techniques (mass spectrometry, light-emitting diode, fluorescence, chemiluminescence, and contactless conductivity), on-line sample pretreatment (flow injection) and chiral separation are described. Applications of CE to assay of active pharmaceutical ingredients (APIs), drug impurity testing, chiral drug separation, and determination of APIs in biological fluids published from 2008 to 2009 are tabulated.  相似文献   

10.
Dolník V 《Electrophoresis》2006,27(1):126-141
This review article with 304 references describes recent developments in CE of proteins, and covers the two years since the previous review (Hutterer, K., Dolník, V., Electrophoresis 2003, 24, 3998-4012) through Spring 2005. It covers topics related to CE of proteins, including modeling of the electrophoretic migration of proteins, sample pretreatment, wall coatings, improving separation, various forms of detection, special electrophoretic techniques such as affinity CE, CIEF, and applications of CE to the analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals, and recombinant protein preparations.  相似文献   

11.
12.
Cellulases are the main components of enzyme complexes used in biotransformation processes of plant raw materials into valuable commercial products. Endoglucanase II (EG II) from the Penicillium verruculosum fungus was cloned into Penicillium canescens. The homogeneous recombinant EGII form is isolated and its properties are studied in comparison with the native enzyme. The N-glycosylation sites and the structure of the N-linked glycans are been determined using mass spectrometry. The biochemical and catalytic properties, as well as the N-glycosylation type of the obtained recombinant EGII form, appear to be close to the native enzyme. At the two potential N-glycosylation sites (N42 and N194) of both forms of the enzyme, N-linked high mannose glycans (or their enzymatic “trimming” products) according to the general formula (Man)1–9(GlcNAc)2 are detected. No glycosylation is found at the third potential site (N19).  相似文献   

13.
Protein glycosylation can impact the efficacy, safety, and pharmacokinetics of therapeutic proteins. Achieving uniform and consistent protein glycosylation is an important requirement for product quality control at all stages of therapeutic protein drug discovery and development. The development of a new microfluidic CE device compatible with MS offers a fast and sensitive orthogonal mode of high-resolution separation with MS characterization. Here, we describe a fast and robust chip-based CE-MS method for intact glycosylation fingerprinting of a therapeutic fusion protein with complex sialylated N and O-linked glycoforms. The method effectively separates multiple sialylated glycoforms and offers a rapid detection of changes in glycosylation profile in 6 min.  相似文献   

14.
Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS–MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS–MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.  相似文献   

15.
Human erythropoietin (hEPO), a hormone involved in the formation of red blood cells, is a 30 kDa glycoprotein with a high carbohydrate content. The production of recombinant hEPO has made possible its widespread therapeutic use and its banned use in competition sports. Methods to analyze EPO and other erythropoiesis stimulating agents (ESAs) are necessary for the characterization and quality control of these biopharmaceuticals and also for doping control. In this paper, high resolution separation methods, namely high performance liquid chromatography (HPLC) and capillary electrophoresis (CE), with special attention to CE-coupled mass spectrometry, are reviewed. The usefulness of these techniques when applied in different modes to separate the glycoprotein isoforms, aggregates or excipients are detailed. In addition, sample preparation methods that have been applied to ESA samples for subsequent determination by HPLC or CE, as well as the potential compatibility of other preparation methods, are discussed. Applications of the HPLC and CE methods regarding regulatory considerations for biopharmaceuticals analysis, with emphasis on biosimilars, and doping control are also included. Finally, limitations of the present methods and their possible solutions are considered.  相似文献   

16.
A study was conducted on the variability of γ‐globulin mobility in serum protein electrophoresis and its molecular basis. We found that the migration time of γ‐globulins can be reproducibly determined (CV=1.1%) on clinical CE equipment. Moreover, we found a significant difference (p<0.001) in the migration of γ‐globulins between chronic liver disease patients (n=98) and a healthy reference group (n=47). Serum immunoglobulins were purified from these patients' sera using protein L ‐agarose and their glycosylation was studied using CE on a DNA sequencer. This glycomics approach revealed that several non‐sialylated N‐glycans show a moderate Pearson correlation coefficient (r=0.2–0.4) with the migration time of γ‐globulins. Their sialylated structures correlate negatively (r=?0.2 to ?0.3). Immunoglobulins are significantly more sialylated in the healthy reference group compared with the patients (p<0.001). We estimated that sialylation heterogeneity contributes about 36% to the molecular variance (carbohydrates and amino acid composition) that affects the electrophoretic mobility of immunoglobulins. This is the first report on the migration time of γ‐globulins on a clinical CE instrument and its potential clinical value to the routinely analyzed serum protein CE profiles.  相似文献   

17.
董娅妮  方群 《色谱》2008,26(3):269-273
重点介绍了近年来国内外在微流控芯片毛细管电泳法用于蛋白质分离分析方面的研究进展。按照分离模式的不同,综述了各种应用于蛋白质分离的微流控芯片毛细管电泳系统,讨论了抑制芯片中的蛋白吸附的各种方法,并展望了芯片毛细管电泳系统在蛋白质分离领域的发展前景。引用文献47篇。  相似文献   

18.
Capillary electrophoresis of proteins 2005-2007   总被引:1,自引:0,他引:1  
Dolník V 《Electrophoresis》2008,29(1):143-156
This review article with 239 references describes recent developments in capillary electrophoresis of proteins, and covers the two years since the previous review (V. Dolník, Electrophoresis 2006, 27, 126-141) through spring 2007. It includes topics related to CE of proteins, such as sample pretreatment, wall coatings, improving separation, various forms of detection, and special electrophoretic techniques including ACE, CIEF, capillary ITP, and CEC. The paper describes applications of CE to analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals and recombinant protein preparations.  相似文献   

19.
A powerful conformational searching and enhanced sampling simulation method, and unbiased molecular dynamics simulations have been used along with NMR spectroscopic observables to provide a detailed structural view of O-glycosylation. For four model systems, the force-field parameters can accurately predict experimental NMR observables (J couplings and NOE's). This enables us to derive conclusions based on the generated ensembles, in which O-glycosylation affects the peptide backbone conformation by forcing it towards to an extended conformation. An exception is described for β-GalNAc-Thr where the α content is increased and stabilized via hydrogen bonding between the sugar and the peptide backbone, which was not observed in the rest of the studied systems. These observations might offer an explanation for the evolutionary preference of α-linked GalNAc glycosylation instead of a β link.  相似文献   

20.
Conventional syntheses of 1,2-trans-β-d - or α-l -glycosidic linkages rely mainly on neighboring group participation in the glycosylation reactions. The requirement for a neighboring participation group (NPG) excludes direct glycosylation with (1→2)-linked glycan donors, thus only allowing stepwise assembly of glycans and glycoconjugates containing this type of common motif. Here, a robust glycosylation protocol for the synthesis of 1,2-trans-β-d - or α-l -glycosidic linkages without resorting to NPG is disclosed; it employs an optimal combination of glycosyl N-phenyltrifluroacetimidates as donors, FeCl3 as promoter, and CH2Cl2/nitrile as solvent. A broad substrate scope has been demonstrated by glycosylations with 12 (1→2)-linked di- and trisaccharide donors and 13 alcoholic acceptors including eight complex triterpene derivatives. Most of the glycosylation reactions are high yielding and exclusively 1,2-trans selective. Ten representative, naturally occurring triterpene saponins were thus synthesized in a convergent manner after deprotection of the coupled glycosides. Intensive mechanistic studies indicated that this glycosylation proceeds by SN2-type substitution of the glycosyl α-nitrilium intermediates. Importantly, FeCl3 dissociates and coordinates with nitrile into [Fe(RCN)nCl2]+ and [FeCl4], and the ferric cationic species coordinates with the alcoholic acceptor to provide a protic species that activates the imidate, meanwhile the poor nucleophilicity of [FeCl4] ensures an uninterruptive role for the glycosidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号