首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two rapid and sensitive analytical methods are developed for the determination of D-penicillamine (D-PEN) and tiopronin (TP) through high-performance liquid chromatography with fluorescence detection (HPLC-FLD) and capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). A boron-dipyrrolemethene (BODIPY) fluorescence labeling reagent, 1,3,5,7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene (TMMB-Br) was successfully applied to derivatize these two thiol drugs. Fluorescein was used as the internal standard (IS) for the quantification of D-PEN and TP in CE-LIF. The derivatization and separation conditions were optimized carefully. Under the optimum conditions, the HPLC and CE separation of D-PEN and TP could be achieved within 12?min. The limits of detection were as low as 2.0 nmol/L for HPLC-FLD and 0.47 nmol/L for CE-LIF. The drugs in human urine and serum samples were determined successfully, and the recoveries were 95.0–06.7% and 95.2–104.3%, respectively.  相似文献   

2.
We have developed two methods for the quantitation of gabapentin in human plasma. They are based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) with and without solid-phase extraction (SPE) and the derivatizing reagent 5-(4,6-dichlorotriazinyl)amino fluoresencin. The conditions for derivatization, separation and extraction were investigated in detail, and the optimal labeling conditions include a temperature of 40?°C, a reaction time of 30?min, and the use of a borate buffer of pH 9.0 as the reaction medium. A borate buffer of pH 9.2 served as a background electrolyte for CE separations. The CE-LIF and SPE-CE-LIF methods have linear ranges of 5–200?nmol?L?1 and 0.2–10?nmol?L?1, respectively, and the limits of detection are 0.5 and 0.02?nmol?L?1, respectively. The SPE-CE-LIF method was successfully applied to the determination of gabapentin in blood plasma samples.
Figure
Two methods have been developed for the quantization of gabapentin (GBP) in human plasma. They are based on capillary electrophoresis-laser induced fluorescence detection (CE-LIF) with and without solid-phase extraction (SPE) and the derivatizing reagent 5-(4,6-dichlorotriazinyl)aminofluorescein.  相似文献   

3.
He Y  Yeung ES 《Electrophoresis》2003,24(1-2):101-108
Protein kinases play a major role in the transformation of cells and are often used as molecular targets for the new generation of anticancer drugs. We present a novel technique for high-throughput screening of inhibitors of protein kinases. The technique involves the use of multiplexed capillary electrophoresis (CE) for the rapid separation of the peptides, phosphopeptides, and various inhibitors. By means of UV detection, diversified peptides with native amino acid sequences and their phosphorylated counterparts can be directly analyzed without the need for radioactive or fluorescence labeling. The effects of different inhibitors and their IC(50) value were determined using three different situations involving the use of a single purified kinase, two purified kinases, and crude cell extracts, respectively. The results suggest that multiplexed CE/UV may prove to be a straightforward and general approach for high-throughput screening of compound libraries to find potent and selective inhibitors of the various protein kinases.  相似文献   

4.
Bai Y  Du F  Yang Y  Bai Y  Liu H 《Journal of separation science》2011,34(20):2893-2900
Quantum dots (QDs), with their superior size-dependent fluorescence properties, have been employed as non-covalent fluorescent labels for the determination of tomato systemin (TomSys) by capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection. The optimum conditions of in-capillary labeling and CE separation were investigated in detail, and complete separation of QDs-labeled TomSys from free QDs labels was achieved. Satisfactory results were obtained in terms of linearity (R(2)=0.998), sensitivity (limit of detection, 66 fmol) and repeatability (run-to-run RSDs of migration time and peak area, 0.9 and 4.6%, respectively; day-to-day RSDs of migration time and peak area, 3.1 and 11.9%, respectively). The established CE-LIF method was later applied in the detection of TomSys spiked in the sample of tomato leaves, which showed the applicability of the proposed method in the analysis of the target plant peptide hormone in the complex matrix.  相似文献   

5.
The combination of the macrocyclic hosts p-sulfonatocalix[4]arene and cucurbit[7]uril with the fluorescent dyes lucigenin and berberine affords two label-free enzyme assays for the detection of kinase and phosphatase activity by fluorescence monitoring. In contrast to established assays, no substrate labeling is required. Since phosphorylation is one of the most important regulatory mechanisms in biological signal transduction, the assays should be useful for identification of inhibitors and activators in high-throughput screening (HTS) format for drug discovery.  相似文献   

6.
We have demonstrated the analysis of aristolochic acids (AAs) that are naturally occurring nephrotoxin and carcinogen by capillary electrophoresis in conjunction with laser-induced fluorescence detection (CE-LIF). Owing to lack of intrinsic fluorescence characteristics of oxidized AAs (OAAs), reduction of the analytes by iron powder in 10.0 mM HCl is required prior to CE analysis. The reduced AAs (RAAs) exhibit fluorescence at 477 nm when excited at 405 nm using a solid-state blue laser. By using 50.0 mM sodium tetraborate (pH 9.0) containing 10.0 mM SDS, the determination of AA-I and AA-II by CE-LIF has been achieved within 12 min. The CE-LIF provides the LODs of 8.2 and 5.4 nM for AA-I and AA-II, respectively. The simple CE-LIF method has been validated by the analysis of 61 Chinese herbal samples. Prior to CE analysis, OAAs were extracted by using 5.0 mL MeOH, and then the extracts were subjected to centrifugation at 3,000 rpm for 5 min. After reduction, extraction, and centrifugation, the supernatants were collected and subjected to CE analysis. Of the 61 samples, 14 samples contain AA-I and AA-II, as well as 10 samples contain either AAI or AAII. The relative standard deviation (RSD) values of the migration times for AA-I and AA-II are less than 2.5% and 2.1% for three consecutive measurements of each sample. The RSD values for the peak heights corresponding to AA-I and AA-II in most samples are about 8.0% and 10.0%, respectively. The result shows that the present CE-LIF approach is sensitive, simple, efficient, and accurate for the determination of AAs in real samples.  相似文献   

7.
Versatile fluorescence probes of protein kinase activity   总被引:1,自引:0,他引:1  
We introduce a versatile fluorescent peptide reporter of protein kinase activity. The probe can be modified to target a desired kinase by changing the kinase recognition motif in the peptide sequence. The reporter motif contains the Sox amino acid, which generates a fluorescence signal when bound to Mg2+ present in the reaction mixture. The phosphorylated peptide exhibits a much greater affinity for Mg2+ than its unphosphorylated analogue and, thus, a greater fluorescence intensity. Product formation during phosphorylation by the kinase is easily followed by the increase in fluorescence intensity over time. These probes exhibit a 3-5-fold increase in fluorescence intensity upon phosphorylation, the magnitude of which depends on the substrate. Peptides containing the reporter functionality are phosphorylated on serine by Protein Kinase C and cAMP-dependent protein kinase and are shown to be good substrates for these enzymes. The principle of this design extends to peptides phosphorylated on threonine and tyrosine.  相似文献   

8.
In this report, we demonstrate the application of Au nanoparticles in the electrochemical detection of protein phosphorylation. The method is based on the labeling of a specific phosphorylation event with Au nanoparticles, followed by electrochemical detection. The phosphorylation reaction is coupled with the biotinylation of the kinase substrate using a biotin-modified adenosine 5′-triphosphate [γ]-biotinyl-3,6,9-trioxaundecanediamine (ATP) as the co-substrate. When the phosphorylated and biotinylated kinase substrate is exposed to streptavidin-coated Au nanoparticles, the high affinity between the streptavidin and biotin resulted in the attachment of Au nanoparticles on the kinase substrate. The electrochemical response obtained from Au nanoparticles enables monitoring the activity of the kinase and its substrate, as well as the inhibition of small molecule inhibitors on protein phosphorylation. We determined the activity of Src non-receptor protein tyrosine kinase, p60c-Src and protein kinase A in combination with their highly specific substrate peptides Raytide™ EL and Kemptide, respectively. The detection limits for Raytide™ EL and Kemptide were determined as 5 and 10 μM, (S/N = 3), and the detection limits for the kinase activity of p60c-Src and protein kinase A (PKA) were determined as 5 and 10 U mL−1, (S/N = 3), respectively. Tyrosine kinase reactions were also performed in the presence of a well-defined inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine (PP2), and its negative control molecule, 4-amino-7-phenylpyrazol[3,4-d] pyrimidine (PP3), which had no inhibition effect. Based on the dependency of Au nanoparticle signal on inhibitor concentration, IC50 value, half-maximal inhibition of the inhibitors was estimated. IC50 values of PP2, genistein and herbimycin A to p60c-Src were detected as 5 nM, 25 μM and 900 nM, respectively. The inhibition of PKA activity on Kemptide using ellagic acid was monitored with an IC50 of 3.5 μM. The performance of the biosensor was optimized including the kinase reaction, incubation with streptavidin-coated Au nanoparticles, and the small molecule inhibitors. Kinase peptide-modified electrochemical biosensors are promising candidates for cost-effective kinase activity and inhibitor screening assays.  相似文献   

9.
We are interested in the detection of DNA adducts and other trace analytes by labeling them with a fluorescent tag followed by use of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for high resolution and sensitivity. Towards this goal, here we report the following: (1) synthesis and handling properties of a near-IR, carboxyl-substituted heptamethine cyanine dye; (2) modification of an existing ball lens LIF detector to provide near-LIF detection with excitation at 785 nm for CE; and (3) corresponding handling and detection of as little as 0.8 amol of the dye by enrich-injection of 4.7 microl of 1 x 10(-13) mol/l dye in methanol from an 8-microl volume into a corresponding CE-LIF system. The electrolyte for the separation was methanol-40 mmol/l aqueous sodium borate (98:2, v/v). This finding encourages further exploration of the dye by functionalization of its carboxyl group for chemical labeling purposes.  相似文献   

10.
Protein kinases control virtually every aspect of normal and pathological cell physiology and are considered ideal targets for drug discovery. Most kinase inhibitors target the ATP binding site and interact with residue of a hinge loop connecting the small and large lobes of the kinase scaffold. Resistance to kinase inhibitors emerges during clinical treatment or as a result of in vitro selection approaches. Mutations conferring resistance to ATP site inhibitors often affect residues that line the ATP binding site and therefore contribute to selective inhibitor binding. Here, we show that mutations at two specific positions in the hinge loop, distinct from the previously characterized "gatekeeper," have general adverse effects on inhibitor sensitivity in six distantly related kinases, usually without consequences on kinase activity. Our results uncover a unifying mechanism of inhibitor resistance of protein kinases that might have widespread significance for drug target validation and clinical practice.  相似文献   

11.
Protein kinases represent a family of enzymes that are critical in cell signaling. One mechanism by which protein kinases are regulated is via autophosphorylation. In the studies described here, we have examined the mechanism of autophosphosphorylation at serine 338 in the regulation of protein kinase A (PKA). Expressed protein ligation allowed for the covalent linkage of an ATP moiety to a Ser mimic at this phosphorylation site. Using a combination of size exclusion chromatography, fluorescence nucleotide binding, kinase measurements, and limited proteolysis assays on this semisynthetic ATP-linked protein, we have obtained unique evidence for an intramolecular autophosphorylation mechanism in PKA regulation. Computational analysis provided a plausible model for a PKA conformation consistent with intramolecular phosphoryl transfer. This approach could be applied to other autoprocessing enzymes by exploiting appropriate transition state analogue motifs in the context of protein semisynthesis.  相似文献   

12.
ATP analogues have been powerful compounds for the study of kinase‐catalyzed phosphorylation. However, the cell impermeability of ATP analogues has largely limited their use to in vitro lysate‐based experiments. Herein, we report the first cell‐permeable ATP analogue, ATP–polyamine–biotin (APB). APB is shown to promote biotin labeling of kinase substrates in live cells and has future applications in phosphoprotein purification and analysis. More generally, these studies provide a foundation for the development of additional cell‐permeable ATP analogues for cell‐signaling research.  相似文献   

13.

Background  

Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1) binds to ATP, and the other (M2) acts as an essential activator.  相似文献   

14.
We have developed and validated a procedure of high sensitivity for the analysis of RNA. The procedure is based on the separation and detection of the 5'-monophosphates of ribonucleosides selectively conjugated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethylene diamine hydrochloride (BODIPY FL EDA) at the 5'-phosphate group using CE with LIF. BODIPY conjugates of the four common ribonucleoside-5'-monophosphates were prepared and subjected to CE-LIF to serve as standard compounds for peak assignment and to develop separation conditions. After digestion of RNA or oligoribonucleotides to 5'-monophosphates by nuclease P1 and fluorescence labeling BODIPY conjugates were detected and resolved by CE-LIF without further purification steps. Comparative CE-LIF analyses with DNA digested to deoxyribonucleoside-5'-monophosphates showed that the assay is equally efficient and sensitive for RNA analysis. Conditions to determine the modified ribonucleosides inosine, xanthosine, pseudouridine and 2'-O-methyladenosine were also established. The limits of detection were in the range of 80-200 pM. After calibrating the assay with oligoribonucleotides, pseudouridine was quantified in total RNA of Drosophila, human liver, human kidney and t-RNA of Saccharomyces cerevisiae. These studies demonstrate good potential of fluorescence labeling of ribonucleoside-5'-monophosphates with BODIPY FL EDA and detection by CE-LIF to determine RNA composition with high accuracy and sensitivity.  相似文献   

15.
Extracellular signal-regulated kinase (ERK) is a key regulatory enzyme mediating cell responses to mitogenic stimulation and is one of the key components in linking growth factor receptor activation to serine/threonine protein phosphorylation processes. Phosphorylation reaction by ERK plays an important role in many signal transduction pathways. ERK phosphorylates numerous substrates such as MBP, microtubule-associated protein 2 (MAP2) and nuclear protein. In particular, MBP is a substrate commonly employed for the detection of ERK activity and contains the consensus primary sequence PRT97P. In this paper, we compared the degree of the phosphorylation reaction of MBP substrate peptides by ERK with the three different MBP substrate peptides, MBP1(KNIVTPRTPPPSQGK), MBP2(VPRTPGGRR) and MBP3(APRTPGGRR) in order to select an efficient substrate peptide for phosphorylation reaction by ERK. The results showed that the MBP3 peptide is the most efficient substrate for phosphorylation reaction by ERK. Using MBP3 peptide, the phosphorylation reaction of MBP by ERK was monitored with both matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE). Our results demonstrate the feasibility of the CE method, the method being a simple and reliable technique in determining and characterizing various kinds of enzyme reaction especially including kinase enzymes.  相似文献   

16.
Two new red luminescent asymmetric squarylium dyes (designated "Red-1c and Red-3") have been shown to exhibit absorbance shifts to longer wavelengths upon the addition of protein, along with a concomitant increase in fluorescence emission. Specifically, the absorbance maxima for Red-1c and Red-3 dyes are 607 and 622 nm, respectively, in the absence of HSA, and 642 and 640 nm in the presence of HSA, making the excitation of their protein complexes feasible with inexpensive and robust diode lasers. Fluorescence emission maxima, in the presence of HSA, are 656 and 644 nm for Red-1c and Red-3, respectively. Because of the inherently low fluorescence of the dyes in their free state, Red-1c and Red-3 were used as on-column labels (that is, with the dye incorporated into the separation buffer), thus eliminating the need for sample derivatization prior to injection and separation. A comparison of precolumn and on-column labeling of proteins with these squarylium dyes revealed higher efficiencies and greater sensitivities for on-column labeling, which, when conducted with a basic, high-salt content buffer, permitted baseline resolution of a mixture of five model proteins. LOD for model proteins, such as transferrin, alpha-lactalbumin, BSA, and beta-lactoglobulin A and B, labeled with these dyes and analyzed by CE with LIF detection (CE-LIF) were found to be dependent upon dye concentration and solution pH, and are as low as 5 nM for BSA. Satisfactory linear relationships between peak height (or peak area) and protein concentration were obtained by CE-LIF for this on-column labeling method with Red-3 and Red-1c.  相似文献   

17.
Recent studies on the PrkC, serine-threonine kinase show that that the enzyme is located at the inner membrane of endospores and is responsible for triggering spore germination. The activity of the protein increases considerably after phosphorylation of four threonine residues placed on the activation loop and one serine placed in the C-terminal lobe of the PrkC. The molecular relationship between phosphorylation of these residues and enzyme activity is not known. In this work molecular dynamics simulation is performed on four forms of the protein kinase PrkC from B. subtilis—phosphorylated or unphosphorylated; with or without ATP bound—in order to gain insight into phosphorylation and ATP binding on the conformational changes and functions of the protein kinase. Our results show how phosphorylation, as well as the presence of ATP, is important for the activity of the enzyme through its molecular interaction with the catalytic core residues. Three of four threonine residues were found to be involved in the interactions with conservative motifs important for the enzyme activity. Two of the threonine residues (T167 and T165) are involved in ionic interactions with an arginine cluster from αC-helix. The third residue (T163) plays a crucial role, interacting with His-Arg-Asp triad (HRD). Last of the threonine residues (T162), as well as the serine (S214), were indicated to play a role in the substrate recognition or dimerization of the enzyme. The presence of ATP in the unphosphorylated model induced conformational instability of the activation loop and Asp-Phe-Gly motif (DFG). Based on our calculations we put forward a hypothesis suggesting that the ATP binds after phosphorylation of the activation loop to create a fully active conformation in the closed position.  相似文献   

18.
The synthesis and electrochemical properties of ferrocene conjugates are presented for the purpose of investigating adenosine 5′‐[γ‐ferrocenoylalkyl] triphosphate ( 1 a – 4 a , ferrocene (Fc)–ATP) as co‐substrates for phosphorylation reactions. Compounds 1 a – 4 a were synthesized, purified by HPLC, and characterized by NMR spectroscopy and mass spectrometry. In solution, all Fc–ATP bioconjugates exhibit a reversible one‐electron redox process with a half‐wave potential (E1/2) in the 390–430 mV range, peak separations (ΔEp) in the 40–70 mV range, and the peak current ratio (ipa/ipc) near unity. The peptide‐modified surface Glu‐Gly‐Ile‐Tyr‐Asp‐Val‐Pro was used to study the sarcoma‐related protein (Src) kinase activity by employing the Fc–ATP bioconjugates as co‐substrates. Subsequent kinase‐catalyzed transfer of the γ‐Fc‐phosphate group to the tyrosine residues of the surface‐bound peptides was characterized by a formal potential (Eo) ≈390 mV (vs. Ag/AgCl). The Fc‐coverage, estimated by time‐of‐flight secondary‐ion mass spectrometry (TOF‐SIMS) and cyclic voltammetry (CV), suggested validity of Fc–ATP conjugates as kinase co‐substrates. Depending on the length of the alkyl spacer of the Fc–ATP conjugate, different current densities were obtained, pointing to a direct correlation between the two. Molecular modeling revealed that the structural constraint imposed by the short alkyl spacer ( 1 a ) causes a steric congestion and negatively affects the outcome of phosphorylation reaction. An optimal analytical response was obtained with the Fc–ATP conjugates with linker lengths longer than six CH2 groups.  相似文献   

19.
Protein phosphorylation is the most frequent post-translational modification used to regulate protein activity. Protein kinases, the enzymes that catalyze the phosphoryl transfer, are implicated in practically every aspect of normal as well as abnormal cell functions. Consequently, sensitive, selective, high-throughput and widely applicable methods for monitoring protein kinase activity will provide valuable tools to screen inhibitor candidates for therapeutics and chemical biology, and to unravel the diverse signaling cascades in which these enzymes are pivotal. Peptide-based chemosensors that rely on fluorescence changes upon phosphorylation are highly desirable, because these systems allow a continuous readout offering an excellent spatial and temporal resolution to observe in real time the kinase activity. This tutorial review briefly summarizes the different fluorescent continuous peptide-based strategies that are being commonly employed to sense protein phosphorylation, introduces a few novel and attractive emerging assays, discusses their advantages and limitations, and highlights possible future directions.  相似文献   

20.
Peroxisomes produce reactive oxygen species which may participate in biotransformations of innate biomolecules and xenobiotics. Isolating functional peroxisomes with low levels of contaminants would be a useful tool to investigate biotransformations occurring in these organelles that are usually confounded with biotransformations occurring in other co-isolated organelles. Here, we immunoisolate peroxisomes and demonstrate that the impurity level after isolation is low and that peroxisomes retain their biological activity. In this method, an antibody targeting a 70-kDa peroxisomal membrane protein was immobilized to silanized magnetic iron oxide beads (1–4 μm in diameter) coated with Protein A. Peroxisomes from L6 rat myoblast homogenates were magnetically captured, washed, and then analyzed for subcellular composition using enzymatic assays. Based on the ratio of peroxisomal to lysosomal activity, the retained fraction is 70-fold enriched relative to the unretained fraction. Similarly, the ratio of peroxisomal activity to mitochondrial content suggests that the retained fraction is >30-fold enriched relative to the unretained fraction. H2O2 production from the β-oxidation of palmitoyl-CoA demonstrated that the isolated peroxisomal fraction was biologically active. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) analysis confirmed that the immunopurified fractions were capable of transforming the anticancer drug doxorubicin and the fatty acid analog, BODIPY 500/510 C1C12. Besides its use to investigate peroxisome biotransformations in health and disease, the combination of magnetic immunoisolation with CE-LIF could be widely applicable to investigate subcellular-specific biotransformations of xenobiotics occurring at immunoisolated subcellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号