共查询到20条相似文献,搜索用时 0 毫秒
1.
Karen A. Murphy Jessica M. Eisenhauer Daniel A. Savin 《Journal of Polymer Science.Polymer Physics》2008,46(3):244-252
A series of amphiphilic block copolymers composed of poly(ethylene oxide) and poly(lactide) were synthesized and their solution properties studied using static and dynamic light scattering. These materials self‐assemble in aqueous media with the hydrodynamic radius increasing with increasing hydrophobic fraction in the copolymer. To ascertain the potential for use of these materials as degradable coatings in delivery applications, block copolymers of varying compositions were adsorbed onto a series of colloidal polystyrene particles with varying radii, and the thickness of the adsorbed layer was determined from changes in the hydrodynamic size. The adlayer thicknesses ranged from 3 to 14 nm with varying block copolymer compositions, and colloid radii. The trends fit well with theoretical models for adlayer thickness, with the exception of the smallest colloids. In these systems, we propose that the colloids may become encapsulated into the block copolymer assembly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 244–252, 2008 相似文献
2.
FH Schacher PA Rupar I Manners 《Angewandte Chemie (International ed. in English)》2012,51(32):7898-7921
Recent advances in polymer synthesis have significantly enhanced the ability to rationally design block copolymers with tailored functionality. The self-assembly of these macromolecules in the solid state or in solution allows the formation of nanostructured materials with a variety of properties and potential functions. This Review illustrates recent progress in the field of block copolymer materials by highlighting selected emerging applications. 相似文献
3.
Minmin Tian Emin Arca Zdenek Tuzar Stephen E. Webber Petr Munk 《Journal of Polymer Science.Polymer Physics》1995,33(12):1713-1722
Block copolymers, when dissolved in a selective solvent, form spherical micelles. These micelles can selectively solubilize organic molecules otherwise insoluble in the pure solvent. In this study, we report solubilization of organic molecules by styrene-methacrylic acid block copolymer micelles in aqueous buffers. A light scattering technique was developed to determine the extent of micellar solubilization. Our results indicate that the extent of micellar solubilization depends on the chemical nature of organic molecules, specifically, on the interactions between the organic compound and polystyrene. A thermodynamic model has been developed to describe micellar solubilization. The theoretical calculation agrees reasonably well with the experimental results for two micellar samples examined. ©1995 John Wiley & Sons, Inc. 相似文献
4.
A convenient new process to make silicone/organic block and graft copolymers has been recently demonstrated. This dual copolymerization process combines conventional condensation polymerization of the siloxane segments with free radical polymerization of the organic vinyl polymer segments. The copolymerization process is relatively simple and economical compared with other copolymerization techniques as it uses commonly available starting materials and available process equipment. Silicone segments containing alkene side chains or end-groups are prepared in the usual way by polycondensation using an acid or base catalyst. The double bonds of the alkene groups are oxidized to carbonyls which are then used to initiate vinyl monomer polymerization and link the siloxane with the vinyl segments. This initiation step is based on a redox system of copper(II) salts which generates free radicals on the alpha carbons next to the carbonyl groups. This copolymerization process is relatively fast and proceeds at high yields. 相似文献
5.
Nikhila Mahadevapuram Indranil Mitra Alona Bozhchenko Joseph Strzalka Gila E. Stein 《Journal of polymer science. Part A, Polymer chemistry》2016,54(2):339-352
We investigate the ordering of poly(styrene-b-methyl methacrylate) (PS-PMMA) lamellar copolymers (periodicity L0 = 46 nm) confined between a free surface and brushed poly(styrene-r-methyl methacrylate) silicon substrate. The processing temperature was selected to eliminate wetting layers at the top and bottom interfaces, producing approximately neutral boundaries that stabilize perpendicular domain orientations. The PS-PMMA film thickness (t = 0.5L0 − 2.5L0) and brush grafting density (Σ = 0.2–0.6 nm−2) were systematically varied to examine their impacts on in-plane and out-of-plane ordering. Samples were characterized with a combination of high-resolution microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering. In-plane order at the top of the film (quantified through calculation of orientational correlation lengths) improved with tn, where the exponent n increased from 0.75 to 1 as Σ decreased from 0.6 to 0.2 nm−2. Out-of-plane defects such as tilted domains were detected in all films, and the distribution of domain tilt angles was nearly independent of t and Σ. These studies demonstrate that defectivity in perpendicular lamellar phases is three-dimensional, comprised of in-plane topological defects and out-of-plane domain tilt, with little or no correlation between these two types of disorder. Strong interactions between the block copolymer and underlying substrate may trap both kinds of thermally generated defects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 339–352 相似文献
6.
Recent progress on polymer dynamics by neutron scattering: From simple polymers to complex materials
The recent (from 2010 onward) contributions of quasielastic neutron scattering techniques (time of flight, backscattering, and neutron spin echo) to the characterization and understanding of dynamical processes in soft materials based on polymers are analyzed. The selectivity provided by the combination of neutron scattering and isotopic—in particular, proton/deuterium—labeling allows the isolated study of chosen molecular groups and/or components in a system. This opportunity, together with the capability of neutrons to provide space/time resolution at the relevant length scales in soft matter, allows unraveling the nature of the large variety of molecular motions taking place in materials of increasing complexity. As a result, recent relevant works can be found dealing with dynamical process which associated characteristic lengths and nature are as diverse as, for example, phenyl motions in a glassy linear homopolymer like polystyrene and the chain dynamics of a polymer adsorbed on dispersed clay platelets. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
7.
Stergios Pispas 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):509-520
Complexes between sodium (sulfamate‐carboxylate)isoprene/ethylene oxide double hydrophilic block copolymers and lysozyme, a globular protein, were formed in aqueous solutions, at pH 7, because of electrostatic interactions between the anionic groups of the polyelectrolyte block of the copolymers and the cationic groups of lysozyme. The structure of the complexes was investigated as a function of the anionic/cationic charge ratio of the two components in solution and ionic strength by static, dynamic, and electrophoretic light scattering, atomic force microscopy, and fluorescence spectroscopy. The mass and size of the micellar‐like complexes depend on the mixing ratio and the molecular characteristics (molecular weight, composition, and architecture) of the copolymer used. Complexation persists at 0.15M NaCl, the value for physiological saline, as a result of additional hydrophobic interactions between the copolymers and the enzyme. Fluorescence spectroscopy measurements indicate that the secondary structure of lysozyme does not change substantially after complex formation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 509–520, 2007 相似文献
8.
Complexes between dextrans of different molar mass and bovine hemoglobin were synthesized by two different methods. In the alkylation method three and in the dialdehyde method, two hemoglobins are coupled on average to one dextran molecule. In both cases, the soluble hemoglobin-dextran complexes reversibly bind and release oxygen; the oxygen affinity is greater than that of free hemoglobin. Static and dynamic light scattering was used to determine the average molar mass Mu, the radius of gyration 〈S〉, and the hydrodynamic radius Rh of both the complexes and the single dextrans. Interpretation of these data is complicated due to the fact that the complexes are copolymers. When appropriate approximations are made, the results indicate that the complexes have a spherical shape and an internal structure of a multiple-chain network, where several dextrans are linked together by the hemoglobins. The number of single dextrans per complex increases as the molar mass of the single dextrans is decreased. The increment is greater in the dialdehyde than in the alkylation method. The probable reason is that in the dialdehyde method one hemoglobin can connect many dextrans simultaneously while in the alkylation method a hemoglobin is able to link maximally two dextrans. The ratio of the radius of gyration to the hydrodynamic radius decreases as the temperature is increased. This suggests a decrease of the solvent penetration length for the complexes and can be interpreted on the basis of the Deutsch-Felderhof theory for porous spheres. © 1994 John Wiley & Sons, Inc. 相似文献
9.
J. V. Prasad 《Journal of polymer science. Part A, Polymer chemistry》1992,30(9):2033-2036
Commercial block copolymers of propylene with ethylene (PEBC) are multiphase systems comprising block and random copolymers as well as small amounts of homopolymers. At present, no satisfactory method exists for characterizing the “blocky” structure of these copolymers. This article aims to fulfill this need. Accordingly, the block and random copolymers of propylene with ethylene have been investigated using 13C CP/MAS NMR with high-power dipolar decoupling. Comparisons have been made between the spectra of block and random copolymers and it is shown possible to distinguish between them by means of an additional signal, appearing at 32.5δ, in block copolymers (attributable to block junctions). © 1992 John Wiley & Sons, Inc. 相似文献
10.
The kinetics of domain size equilibration were studied for asymmetric poly(ethylene‐alt‐propylene)‐b‐poly(dimethyl siloxane) (EPDMS) and polyisoprene‐b‐poly(dimethyl siloxane) (IDMS) block copolymers in the body‐centered cubic ordered phase. Small‐angle X‐ray scattering measurements of the principal peak position (q*) were made as a function of time after temperature jumps within the ordered state. The equilibration times were remarkably long, especially on cooling and for temperatures below 100 °C. For example, after a quench to 40 °C, q* for EPDMS had not fully equilibrated even after several weeks of annealing; IDMS required several days to equilibrate at the same temperature. In contrast, a lamella‐forming EPDMS sample was able to adjust q* within the timescale of the measurements (i.e., minutes) with both heating and cooling over the same temperature range. Measurements of tracer diffusion indicated that chain mobility was not the rate‐limiting step, although differences in mobility did account for the differences between EPDMS and IDMS. Rather, the limiting step was the required reduction in the number density of spheres on cooling; the disappearance of spheres, either by evaporation or by fusion, provided a large kinetic barrier. Lamellae, however, could adjust domain dimensions simply by local displacements of individual chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 715–724, 2003 相似文献
11.
Muhammad Imran Malik Bernd Trathnigg Karin Bartl Robert Saf 《Analytica chimica acta》2010,658(2):217-8378
Polyoxyalkylene diblock copolymers (consisting of PEO as hydrophilic block and PBO or PHO as hydrophobic block) are characterized by combination of two dimensional liquid chromatography and MALDI-TOF-MS. Liquid chromatography under critical conditions (LCCC) is used as first dimension and fractions are collected, mobile phase evaporated and diluted in the mobile phase used in the second dimension (SEC, LCCC or LAC). This two-dimensional chromatography in combination of MALDI-TOF-MS gives information about purity of reaction products, presence of the byproducts, chemical composition and molar mass distribution of all the products. 相似文献
12.
Nikhila Mahadevapuram Joseph Strzalka Gila E. Stein 《Journal of polymer science. Part A, Polymer chemistry》2013,51(7):602-610
Thin films of lamellar and cylindrical block copolymers are popular systems for low-cost nanolithography. To be useful as nanoscale templates, the lamellae or cylinders must be oriented perpendicular to the substrate. Domain orientations are usually characterized by microscopy measurements of the film surface, but these techniques cannot detect tilted, bent, or tortuous domains in the film interior. We report a simple method to quantify out-of-plane disorder in thin films of block copolymers based on a variant of grazing-incidence small angle X-ray scattering (GI-SAXS). A typical GI-SAXS experiment illuminates the center of a substrate-supported film at a grazing angle of incidence (near the film/substrate critical angle), and the strong reflected signal is interpreted with the distorted-wave Born approximation. In a new approach, the beam footprint is moved to the far edge of the sample, allowing the acquisition of a transmission pattern. The grazing-incidence transmission data are interpreted with the simple Born approximation, and out-of-plane defects are quantified through analysis of crystal truncation rods and partial Debye-Scherrer rings. Significantly, this study demonstrates that grazing-incidence transmission small angle X-ray scattering can detect and quantify the buried defect structure in thin films of block copolymers. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
13.
The self‐assembly behavior of poly(isoprene‐b‐acrylic acid) and poly(styrene‐b‐2‐vinylpyridine) amphiphilic block copolymers, as well as a poly(styrene‐r‐2‐vinylpyridine) amphiphilic random copolymer was investigated in slightly selective organic solvents (tetrahydrofuran and toluene) in the presence of Ag and Au ions and subsequently Ag, Au metal nanoparticles, by means of dynamic light scattering. In the range of concentrations studied the copolymers exist in the form of micelles with cores composed of acrylic acid and 2‐vinylpyridine segments in equilibrium with unimers. The addition of metal ions and their subsequent transformation to metal nanoparticles shifts the equilibrium in favor of the micelles. The concentration of the inorganic components has also a considerable effect on the size of the polymeric aggregates. A similar behavior is observed for the random copolymer. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), UV‐visible spectroscopy, and transmission electron microscopy (TEM) give valuable additional information on the nature of the interactions between the polymeric and inorganic components, as well as on the characteristics of the metal nanoparticles and the hybrid micelles formed in each case. The presented results have a direct relation to the synthesis of metal nanoparticles under confinement by utilization of copolymer nanoreactors and appropriate solution conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1515–1524, 2008 相似文献
14.
The domain microstructure and the nematic LC mesophase in a series of side-chain liquid crystalline/isotropic (LC/I) diblock copolymers with systematically varied block volume fractions were studied in a broad temperature range (25–170 °C) by DSC, polarized microscopy, and wide and small angle X-ray scattering. At all temperatures the block copolymers are microphase separated. The PSLC block copolymers exhibit order at two length-scales: on one hand, a nematic LC mesophase with characteristic length-scale of 0.43 nm (intermesogen distance); on the other hand, lamellar, hexagonal or cubic domain microstructures with characteristic length-scales of 27–44 nm (lattice parameter). The LC block was either located in the matrix or confined inside the microdomains. The thermotropic behavior is characterized by the sequence g/~35 °C/n/~115 °C/i and is not affected by the domain microstructure and/or dimensions. Analysis of the lamellar dimensions showed that the LC chain is stretched. With increasing temperature, a thermal expansion of both blocks takes place followed by a retraction of the LC chain above TNI. The phase diagram is asymmetric and does not alter above TNI. No order-to-order transitions triggered by the nematic-isotropic transition are observed. It was shown that domain microstructures of low interfacial curvature (lamellar and hexagonal) are energetically favored over the geometrically expected ones of high interfacial curvature (micellar cubic) due to the presence of nematic LC mesophase in the matrix or in the microdomains. By comparison to theory a Kuhn segment length of the LC block bLC=0.86 nm was derived from the location of the lamellar/hexagonal phase boundaries.This paper is dedicated to Prof. Fischer on the occasion of his 75th birthday. 相似文献
15.
Pawel W. Majewski Manesh Gopinadhan Chinedum O. Osuji 《Journal of Polymer Science.Polymer Physics》2012,50(1):2-8
Block copolymers (BCPs) offer an exciting range of structures and functions that are of potential utility in existing as well as emerging technologies. Although this is generally acknowledged, with few exceptions, viable strategies for establishing scalable and robust control of BCP microstructure are underdeveloped. Magnetic field alignment offers great potential in this regard. The physics bears much in common with electric field alignment, but the absence of dielectric breakdown concerns and the more flexible, space pervasive nature of magnetic fields make it possible to design processes for high‐throughput fabrication of well‐ordered films with appropriate materials. In this perspective, we highlight the use of magnetic fields for control of microstructure in BCPs as well as polymer nanocomposites involving anisotropic nanomaterials. A brief review of efforts to date is given. Open questions related to field‐polymer interactions and future directions for magnetic alignment of these systems are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
16.
Static and dynamic scattering properties of polymer blends and block copolymers are examined within the random phase approximation (RPA). A self-consistent theoretical scheme for a simultaneous analysis of elastic and quasielastic scattering data is presented. The case of a triblock copolymer made of an ordinary central block and two deuterated lateral blocks in a matrix of deuterated homopolymers is considered in detail. The theoretical predictions of the RPA are compared with the experimental data obtained by elastic neutron scattering experiments using mixtures of deuterated poly(dimethylsiloxane) homopolymers and copolymers made of three blocks of approximately equal sizes. The lateral blocks are deuterated poly(dimethylsiloxane) and the central one is an ordinary poly(dimethylsiloxane). A good agreement is found in the whole range of wavevectors covered by the experiments. An extension of the RPA to the analysis of the dynamical scattering data for the same systems is put forward. It is shown how the time relaxations of the bare response functions obtained from the single chain dynamics are used to extract the intermediate scattering function characterizing the system of interacting chains. © 1996 John Wiley & Sons, Inc. 相似文献
17.
Summary Different experimental methods - hydrodynamical measurements, electronmicroscopy, X-ray crystallography, Yray and neutron small-angle scattering — provide data on the shape and dimensions of immunoglobulin molecules. Comparison of these data using model computation shows that the shape ofIgG immunoglobulin in dissolved state differs from that in crystalline state. The same statement is valid for the shape ofFab andFc fragments. Immunoglobulins of different origin have different dimensions. Correlation between the number of interchain disulphide bonds and the values of the radius of gyration may be observed. The value of the radius of gyration decreases when theIgG molecule binds haptens while the shape of the molecule seems to remain unchanged. This effect has a nonlinear dependence on the saturation of binding sites and may be connected with the effector function ofIgG molecule. 相似文献
18.
Gretchen Voge Kari Fosser Dean Waldow Robert Briber Adel Halasa 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):3191-3203
Small-angle neutron scattering (SANS) has been employed to study a blend of polystyrene and polybutadiene modified by copolymer additives. SANS data from the one-phase region approaching the phase boundary has been acquired for blends modified by random and diblock copolymers that have equal amounts of styrene and butadiene monomers as well as a random copolymer with an unequal monomer composition. The binary blend is near the critical composition, and the copolymer concentrations are low at 2.5% (w/w). The data have been fitted with the random-phase approximation model (binary and multicomponent versions) to obtain Flory–Huggins interaction parameters (χ) for the various monomer interactions. These results are considered in the context of previous light scattering data for the same blend systems. The SANS cloud points are in good agreement with previous results from light scattering. The shifts in the phase boundary are due to the effects of the additives on the χ parameter at the spinodal. All the additives appear to lower the χ parameter between the homopolymers; this is in conflict with the predicted Flory–Huggins behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3191–3203, 2004 相似文献
19.
End group polarity and block symmetry effects on cloud point and hydrodynamic diameter of thermoresponsive block copolymers 下载免费PDF全文
Xu Xiang Xiaochu Ding Ning Chen Beilu Zhang Patricia A. Heiden 《Journal of polymer science. Part A, Polymer chemistry》2015,53(24):2838-2848
Thermoresponsive block copolymers are of interest for delivery vehicles in the body. Often an interior domain is designed for the active agent and the exterior domain provides stability in the bloodstream, and may carry a targeting ligand. There is still much to learn about how block sequence and chain end identity affect micelle structure, size, and cloud points. Here, hydrophilic oligo(ethylene glycol) methyl ether acrylate and more hydrophobic di(ethylene glycol) methyl ether methacrylate monomers were polymerized to give amphiphilic block copolymers with amphiphilic chain ends. The block sequence and chain end identity were both controlled by appropriate choice of RAFT chain transfer agents to study the effect of ‘matched’ and ‘mismatched’ chain end polarity with amphiphilic block sequence. The affect of matching or mismatching chain end polarity and block sequence was studied on the hydrodynamic diameter, cloud point, and temperature range of the chain collapse on linear di‐ and triblock copolymers and star diblock polymers. The affects of matching or mismatching chain end polarity were significant with linear diblock copolymers but more complex with triblock and star copolymers. Explanations of these results may help guide others in designing thermoresponsive block copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2838–2848 相似文献
20.
Ashish K. Khandpur Christopher W. Macosko Frank S. Bates 《Journal of Polymer Science.Polymer Physics》1995,33(2):247-252
Contrast for transmission electron microscopy (TEM) of microphase-separated saturated hydrocarbon diblock copolymers has been obtained using ruthenium tetroxide (RuO4). This technique exploits differences in the rate of transport of the oxidizing stain in rubbery amorphous versus semicrystalline, or glassy, microdomains. Rapid quenching from above the melting (Tm), or glass transition (Tg) temperature is shown to preserve the equilibrium melt morphology in poly(ethylene)-poly(ethyl-ethylene) (PE-PEE), poly(ethylene)-poly(ethylene-propylene) (PE-PEP), and poly(vinylcyclohexane)-poly(ethyl-ethylene) (PVCH-PEE) diblock copolymers; PE melts at 108°C, PVCH is glassy up to about 140°C, while PEE and PEP remain rubbery down to approximately-20°C and ?56°C, respectively. Treatment of ultrathin sections of the quenched specimens with RuO4 vapor led to welldefined TEM images, that revealed microdomain type and order. These results are consistent with SANS data taken under equilibrium conditions. © 1995 John Wiley & Sons, Inc. 相似文献